
Probabilistic Memory Consistency Specifications
Reese Levine
UC Santa Cruz

USA

Tyler Sorensen
UC Santa Cruz

USA

1 INTRODUCTION
Memory consistency specifications (MCS) have been developed as
a way to reason about the interactions of shared memory across
multiple cores. The simplest and most intuitive specification is
sequential consistency (SC) [13], which specifies executions must
correspond to some total order which is consistent with per-thread
program order.

However, modern architectures do not implement SC by default,
with research showing the prohibitive hardware costs of a glob-
ally consistent memory store [10]. Thus, architectures have been
optimized to include layers of caches and buffers that increase per-
formance and researchers have developed relaxed MCSs, such as
the x86 [22] and C11 [6] memory models, which formally explain
the nuanced behaviors allowed by a relaxed MCS.

Despite the relaxed models of many architectures, many applica-
tions require stronger memory orderings. Programs must enforce
this using memory fences, which are special instructions that en-
force the required ordering. While fences are often necessary for
full correctness, they impose a performance penalty on applications
that use them.

One idea that researchers have built on to increase performance
of many applications is to note that in some circumstances, an
approximate result may be accurate enough. This paradigm is called
approximate computing, and includes techniques like approximating
load values in hardware [16], discarding some atomic operations in
GPU kernels [21], and speeding up critical sections by sometimes
avoiding acquiring locks [19]. The idea of probabilistic disruption
of thread communication is known as relaxed synchronization.

This proposal aims to extend the notion of relaxed synchroniza-
tion to relaxed memory consistency specifications, introducing rare
but possible weak memory behaviors that could lead to some result
inaccuracy but increased performance. Our contributions will be:

• Empirically exploring the occurrence of weak behaviors on
many different architectures under different system states

• Designing probabilistic memory consistency specifications
(P-MCS), specialized to each system

• Using the P-MCS to provide approximate guarantees on
different applications that use synchronization

GPUs provide a good target for our work because of the diversity
of devices, the high cost of memory fences compared to CPUs, and
GPU applications such as graphics and machine learning that may
tolerate approximate results. For example, work on fence insertion
in CPUs showed conservative, safe strategies led to around a 30%
increase in runtime [3], while similar analysis on GPUs showed a
median of 174% increase in runtime [23].

1.1 MCS Definitions
An MCS can be illustrated using litmus tests, which are small con-
current programs. Figure 1a is an example of a test called Message
Passing (MP), where one thread writes a value to a data variable

Initialize: x = 0 && y = 0

thread 0 thread 1
a:𝑊 x = 1 c: 𝑅{𝑎𝑐𝑞} r0 = y
b:𝑊{𝑟𝑒𝑙 } y = 1 d: 𝑅 r1 = x

Condition: r0 == 1 && r1 == 0

(a) Pseudocode for the MP litmus test

thread 0 thread 1

a: W x = 1

b: W{rel} y = 1

c: R{acq} y = 1

d: R x = 0

po
rf/{sw}

po
fr

(b) Candidate execution of MP using
notation from axiomatic MCSs

Figure 1: Amessage passing (MP) litmus test. Making instruc-
tion 𝑏 a release write and 𝑐 an acquire read introduces the
synchronizes-with relation, disallowing the weak behavior.

(𝑎) followed by a flag variable (𝑏), while a second thread first reads
the flag (𝑐) and then the data (𝑑). The condition illustrates a weak
behavior of this litmus test, where despite the flag variable being
read as 1, the data variable is read as 0. Without adding synchro-
nization, this behavior is visible on modern systems, such as ARM
CPUs and many GPUs.

This weak behavior can be described using an axiomatic MCS,
which represents program behaviors as candidate executions con-
sisting of sets of events and relations between them. Following
notation used in prior work [4, 6], the candidate execution that
represents the condition r0 == 1 && r1 == 0 is shown in Fig. 1b.
Program-order (𝑝𝑜) relates events in the same thread, reads-from
(𝑟 𝑓 ) relates reads to the write they read from, and from-reads (𝑓 𝑟 ) is
an inferred relation that relates writes to a read that occurs before
the write. Many weak behaviors can be characterized by cycles in
these relations.

To enforce ordering using fences, high-level languages (e.g. C++)
allow a memory order to be attached to shared-memory operation,
which translates to different types of fences depending on the ar-
chitecture. Following this notation, we can strengthen event 𝑏 to a
store-release, and event 𝑐 to a load-acquire, which is shown as the
subscript in Fig. 1. Under these semantics, if 𝑐 reads the value 𝑏
wrote, we say 𝑏 synchronizes-with (𝑠𝑤 ) 𝑐 . In the C++ MCS, the 𝑠𝑤
and 𝑝𝑜 relations are subsets of the happens-before (ℎ𝑏) relation,
which reflects the order in which events should appear to happen
and in this case, enforces that 𝑑 reads from 𝑎.

1.2 Weak Behaviors in Practice
To provide confidence in a given MCS, prior work has explored
methods for empirically testing and identifying weak behaviors on
CPU-based systems [5, 8]. While it was once thought that weak
behaviors were unlikely to be observed on GPUs [9], more recent
work ran large experimental campaigns on GPUs from different
vendors and revealed that GPUs show many of the same weak
behaviors as CPUs [2]. This led to more work that generalized the



Reese Levine and Tyler Sorensen

Table 1: Percentage of times a weak behavior was observed
on GPUs running on Android devices, using Vulkan as the
GPU framework.

Litmus Test

Device MP S R LB SB 2+2W

ARM Mali - G71 0 0 0 0 0 0
ARM Mali - G78 0.23 0 0 0 0 0
Qualcomm Adreno 610 0 0 0 0 0 0
Qualcomm Adreno 640 0 0.13 0 0.09 0.13 0.17
Qualcomm Adreno 642L 0 0.22 0 0.15 0.2 0.27
Qualcomm Adreno 660 0.01 0.59 0 0.28 0.64 0.58
PowerVR GE8320 0 0 0 0 0 0
NVIDIA Tegra X1 0.0006 0.0007 0.0009 0.0009 0.001 0.001

techniques for exposing weak behaviors into testing environments
that were used to expose weak memory related bugs in existing
GPU applications [23] and to find bugs in GPU compilers and ar-
chitecture [12].

2 A PROBABILISTIC MCS
An MCS specifies exactly the types of behaviors that are allowed
by shared-memory accesses and provides safety guarantees when
synchronization is used. However, the rates at which weak behav-
iors actually occur varies across devices and architectures, as well
as how stressful the test environment is. Some initial data on rates
of weak behaviors, collected through testing mobile GPUs running
on Android devices using the Vulkan compute framework [11],
is shown in Tab. 1. Each row shows a different device, while the
columns show the data for six classic weak memory litmus tests
described by prior work [4]: message passing (MP), store (S), read
(R), load buffer (LB), store buffer (SB), and 2+2 write (2+2W).

The initial data shows that even when running under state-of-
the-art test environments, weak behaviors are extremely rare, with
the SB test on a Qualcomm Adreno 660 showing the highest per-
centage at .64%. In contrast, other devices from ARM, Qualcomm,
and PowerVR show no weak behaviors. Therefore, if an application
can tolerate occasional inaccurate results, it may be possible for
them to forego using memory fences that enforce synchronization
to increase their performance. For example, Niu et al. found that
stochastic gradient descent could achieve convergence from be-
tween 3-10x faster when shared memory processors sometimes
overwrote each other’s results with [18], and Renganarayana et
al. use relaxed synchronization to speed up k-means clustering
between 2-15x depending on the parameters, with no change in the
ultimate convergence of the clustering algorithm [19].

Our plan is to augment an MCS with probabilistic prop-
erties, giving estimates around the number of times weak
behaviors might occur. The system can be tuned depending on
the amount of anticipated load, and numbers will be based on rig-
orous MCS testing campaigns using litmus tests. Results will be
specialized to each different chip and will be evaluated against
approximate computing workload, allowing us to document the
accuracy/performance trade-offs across different devices.

Our initial work will target an MCS for ISAs, as high level lan-
guages must cope with the additional consideration of the compiler

introducing weak behaviors. Once we are able to show that our ap-
proach provides benefit at the ISA level, we will examine language
level MCSs and their additional complexities.

Ultimately, a probabilistic MCS will be beneficial to high level
language designers as well, as it could affect compiler development
and language semantics. Further work will explore finer-grained
probabilistic properties of re-orderings at the micro-architectural
level by using the 𝜇ℎ𝑏 relation defined in [15].

3 EVALUATION
The evaluation of probabilistic MCSs will consist of three parts:

• Collecting data on weak behaviors across a variety of GPUs
by running comprehensive litmus test campaigns.

• Synthesizing P-MCSs from empirical testing results.
• Utilizing the P-MCS to make per-device probabilistic guar-

antees about approximate computing applications, such
as prefix scans and k-means. We will explore the unique
performance/accuracy trade-off per device.

As part of our prior research [14], we have already built tools
for running litmus tests in both WebGPU and Vulkan. Some of the
initial results of these experiments on Vulkan are shown in Tab. 1.
We plan on running much more detailed experiments and collect
data on more GPUs to build confidence in our methodology.

Empirical data collected under highly specialized stress could
represent the worst case in terms of the rate of weak behaviors,
where empirical data collected under little system stress could
represent the best case for a P-MCS. We will innovate approaches
for designing P-MCSs that take into account representative system
environments when GPU synchronization is actually executed.

4 RELATEDWORK
The idea of probabilistic MCSs follows both from work on test-
ing MCSs to reveal weak behaviors and approximate computing.
Frameworks like “litmus" [5] focused on exposing weak behaviors
on CPUs, while later work developed frameworks to show weak
behaviors and find bugs on GPUs [2, 12, 24]. We extend these works
and will use the data on weak behaviors to develop new models
for approximate computation under weak MCSs. MCSs are often
used in high level languages, but research on micro-architectural
MCSs have focused on verifying semantics of programs across the
full stack [25].

In the field of approximate computing, relaxed synchronization
was introduced to avoid some critical sections by skipping acquir-
ing locks [19]. A number of relaxed synchronization techniques
have been proposed, with work investigating the effect of injecting
concurrency bugs such as removing barriers or changing atomic
operations to conventional ones [1]. Data structures that execute
without synchronization, increasing performance at the expense
of accuracy and introducing data races, have been developed [20],
along with compilers that generate approximate parallel programs
that may include races [17]. A framework for reasoning about the
behavior of programs with relaxed non-deterministic programs, in-
cluding ones that remove synchronization, has been introduced [7].

While this work is inspired by relaxed synchronization, prior
work on it has focused on specific algorithms rather than using
empirical data to derive a probabilistic specification that can be used



Probabilistic Memory Consistency Specifications

in general application design. Our goal is to augment existing MCSs
with probabilistic properties, providing pragmatic information that
developers can utilize to implement fast approximate applications
across the ever-increasing range of GPU devices.

REFERENCES
[1] Ismail Akturk, Riad Akram, Mohammad Majharul Islam, Abdullah Muzahid, and

Ulya R. Karpuzcu. 2016. Accuracy Bugs: A New Class of Concurrency Bugs
to Exploit Algorithmic Noise Tolerance. ACM Trans. Archit. Code Optim. 13, 4,
Article 48 (dec 2016), 24 pages. https://doi.org/10.1145/3017991

[2] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen
Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. 2015. GPU Con-
currency: Weak Behaviours and Programming Assumptions. In Proceedings of
the Twentieth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Istanbul, Turkey) (ASPLOS ’15). As-
sociation for Computing Machinery, New York, NY, USA, 577–591. https:
//doi.org/10.1145/2694344.2694391

[3] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2017. Don’t
Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion.
ACM Trans. Program. Lang. Syst. 39, 2, Article 6 (may 2017), 38 pages. https:
//doi.org/10.1145/2994593

[4] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in
Weak Memory Models. In Proceedings of the 22nd International Conference on
Computer Aided Verification (Edinburgh, UK) (CAV’10). Springer-Verlag, Berlin,
Heidelberg, 258–272. https://doi.org/10.1007/978-3-642-14295-6_25

[5] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus:
Running Tests Against Hardware, Vol. 6605. 41–44. https://doi.org/10.1007/978-
3-642-19835-9_5

[6] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.
Mathematizing C++ Concurrency. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin,
Texas, USA) (POPL ’11). Association for Computing Machinery, New York, NY,
USA, 55–66. https://doi.org/10.1145/1926385.1926394

[7] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard. 2012.
Proving Acceptability Properties of Relaxed Nondeterministic Approximate
Programs. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (Beijing, China) (PLDI ’12). Association for
Computing Machinery, New York, NY, USA, 169–180. https://doi.org/10.1145/
2254064.2254086

[8] William W. Collier. 1992. Reasoning about Parallel Architectures. Prentice-Hall,
Inc., USA.

[9] Wu-chun Feng and Shucai Xiao. 2010. To GPU synchronize or not GPU syn-
chronize?. In 2010 IEEE International Symposium on Circuits and Systems (ISCAS).
3801–3804. https://doi.org/10.1109/ISCAS.2010.5537722

[10] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. 1991. Performance
Evaluation of Memory Consistency Models for Shared-Memory Multiprocessors.
In Proceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Santa Clara, California,
USA) (ASPLOS IV). Association for Computing Machinery, New York, NY, USA,
245–257. https://doi.org/10.1145/106972.106997

[11] Khronos Group. 2022. Vulkan 1.3 Core API.
[12] Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi. 2020. Foun-

dations of Empirical Memory Consistency Testing. Proc. ACM Program. Lang. 4,
OOPSLA, Article 226 (Nov. 2020), 29 pages. https://doi.org/10.1145/3428294

[13] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/
359545.359563

[14] Reese Levine, Tianhao Guo, Mingun Cho, Alan Baker, Raph Levien, David Neto,
Andrew Quinn, and Tyler Sorensen. 2023. MC Mutants: Evaluating and Im-
proving Testing for Memory Consistency Specifications. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA, 473–488.
https://doi.org/10.1145/3575693.3575750

[15] Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi.
2015. CCICheck: Using 𝜇ℎ𝑏 graphs to verify the coherence-consistency interface.
In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 26–37. https://doi.org/10.1145/2830772.2830782

[16] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. 2014. Load Value
Approximation. In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture. 127–139. https://doi.org/10.1109/MICRO.2014.22

[17] Sasa Misailovic, Deokhwan Kim, and Martin Rinard. 2013. Parallelizing Sequen-
tial Programs with Statistical Accuracy Tests. ACM Trans. Embed. Comput. Syst.
12, 2s, Article 88 (may 2013), 26 pages. https://doi.org/10.1145/2465787.2465790

[18] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. 2011. HOG-
WILD! A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In
Proceedings of the 24th International Conference on Neural Information Processing
Systems (Granada, Spain) (NIPS’11). Curran Associates Inc., Red Hook, NY, USA,
693–701.

[19] Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and
Daniel Prener. 2012. Programming with Relaxed Synchronization. In Proceedings
of the 2012 ACMWorkshop on Relaxing Synchronization forMulticore andManycore
Scalability (Tucson, Arizona, USA) (RACES ’12). Association for Computing
Machinery, New York, NY, USA, 41–50. https://doi.org/10.1145/2414729.2414737

[20] Martin Rinard. 2013. Parallel Synchronization-Free Approximate Data Structure
Construction. In Proceedings of the 5th USENIX Conference on Hot Topics in
Parallelism (San Jose, CA) (HotPar’13). USENIX Association, USA, 6.

[21] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati, and Scott
Mahlke. 2013. SAGE: Self-tuning approximation for graphics engines. In 2013
46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
13–24.

[22] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,
Thomas Braibant, Magnus O. Myreen, and Jade Alglave. 2009. The Semantics
of X86-CC Multiprocessor Machine Code. In Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Savannah, GA, USA) (POPL ’09). Association for Computing Machinery, New
York, NY, USA, 379–391. https://doi.org/10.1145/1480881.1480929

[23] Tyler Sorensen and Alastair F. Donaldson. 2016. Exposing Errors Related to
Weak Memory in GPU Applications. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Santa Barbara,
CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA,
100–113. https://doi.org/10.1145/2908080.2908114

[24] Tuan Ta, Xianwei Zhang, Anthony Gutierrez, and Bradford M. Beckmann. 2019.
Autonomous Data-Race-Free GPU Testing. In 2019 IEEE International Sympo-
sium on Workload Characterization (IISWC). 81–92. https://doi.org/10.1109/
IISWC47752.2019.9042019

[25] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Mar-
garet Martonosi. 2017. TriCheck: Memory Model Verification at the Trisection of
Software, Hardware, and ISA. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems (Xi’an, China) (ASPLOS ’17). Association for Computing Machinery, New
York, NY, USA, 119–133. https://doi.org/10.1145/3037697.3037719

https://doi.org/10.1145/3017991
https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1145/2994593
https://doi.org/10.1145/2994593
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2254064.2254086
https://doi.org/10.1145/2254064.2254086
https://doi.org/10.1109/ISCAS.2010.5537722
https://doi.org/10.1145/106972.106997
https://doi.org/10.1145/3428294
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3575693.3575750
https://doi.org/10.1145/2830772.2830782
https://doi.org/10.1109/MICRO.2014.22
https://doi.org/10.1145/2465787.2465790
https://doi.org/10.1145/2414729.2414737
https://doi.org/10.1145/1480881.1480929
https://doi.org/10.1145/2908080.2908114
https://doi.org/10.1109/IISWC47752.2019.9042019
https://doi.org/10.1109/IISWC47752.2019.9042019
https://doi.org/10.1145/3037697.3037719

	1 Introduction
	1.1 MCS Definitions
	1.2 Weak Behaviors in Practice

	2 A Probabilistic MCS
	3 Evaluation
	4 Related Work
	References

