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In untrusted execution environments such as web browsers, code from remote sources is regularly executed.
To harden these environments against attacks, constituent programming languages and their implementations
must uphold certain safety properties, such as memory safety. These properties must be maintained across
the entire compilation stack, which may include intermediate languages that do not provide the same safety
guarantees. Any case where properties are not preserved could lead to a serious security vulnerability.

In this work, we identify a specification vulnerability in the WebGPU Shading Language (WGSL) where
code with data races can be compiled to intermediate representations in which an optimizing compiler could
legitimately remove memory safety guardrails. To address this, we present SafeRace, a collection of threat
assessments and specification proposals across the WGSL execution stack. While our threat assessment
showed that this vulnerability does not appear to be exploitable on current systems, it creates a "ticking
time bomb", especially as compilers in this area are rapidly evolving. Given this, we introduce the SafeRace
Memory Safety Guarantee (SMSG), two components that preserve memory safety in the WGSL execution
stack even in the presence of data races. The first component specifies that program slices contributing to
memory indexing must be race free and is implemented via a compiler pass for WGSL programs. The second
component is a requirement on intermediate representations that limits the effects of data races so that they
cannot impact race-free program slices. While the first component is not currently possible to apply to all
WGSL programs due to limitations on how some data types can be accessed, we show that existing language
constructs are sufficient to implement this component with minimal performance overhead on many existing
important WebGPU applications. We test the second component by performing a fuzzing campaign of 81 hours
across 21 compilation stacks; our results show violations on only one (likely buggy) machine, thus providing
evidence that lower-level GPU frameworks could relatively straightforwardly support this constraint. Finally,
our assessments discovered GPU memory isolation vulnerabilities in Apple and AMD GPUs, as well as a
security-critical miscompilation of WGSL in a pre-release version of Firefox.
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i: array<u32, 1>, m: array<u32, 4>

Thread 0 Thread 1
a: i[0] = 2 c: i[0] = 4
. . . // some computation
b: let r0 = m[min(i[0], 3)]

(a) Program with a data race on i[0], which is

used to index into m.

i: array<u32, 1>, m: array<u32, 4>

Thread 0 Thread 1
a: i[0] = 2 c: i[0] = 4
var x = 2
b: let r0 = m[min(x, 3)]

(b) Program with a data race on i[0], with x used
to index into m.

Fig. 1. WGSL compilers insert dynamic bounds-checks (shown in red) to provide memory safety. We show

that under current specifications the bounds-checks can be optimized away in either program, leading to

potential memory safety violations.

1 Introduction

A programming language is safe with respect to some property if it guarantees that property will
hold throughout the entire compilation process, and thus, during execution. One important property
is memory safety, which prevents behaviors such as out-of-bounds and use-after-free accesses. This
property is especially important as some of the most notorious exploits and vulnerabilities found
in recent decades are related to memory safety [17–19]; furthermore, large-scale corporate studies
have found that the majority of all vulnerabilities are related to memory safety [8, 11].

Memory isolation vulnerabilities, in which a process can accesses the memory of another process,
are one class of vulnerabilities that can occur when memory safety is violated. The risk of memory
isolation vulnerabilities has led to the development of memory-safe languages, including languages
such as JavaScript and WebAssembly (Wasm) for web browsers. At the same time, runtimes, e.g.,
operating systems, have developed protections to maintain memory isolation, e.g., exceptions and
segmentation faults, even when executing programs written in memory-unsafe languages like C++.

However, due to their lean (and performance oriented) implementations, GPUs might not have
these defensive runtimes, nor other mechanisms that provide memory protection. Furthermore,
because essentially all modern consumer devices allow multiple processes to share access to the
GPU, these devices are increasingly receiving attention in the security community; including
the discovery of several notable cases of memory isolation vulnerabilities [65, 79]. Running GPU
programs in web browsers amplifies security risks even further, as web pages can execute untrusted
code and thus, may maliciously try to access data from other tabs or applications.
Despite these risks, GPUs enable many important applications on the web, such as AI where a

single GPU can now run LLM inference [24, 77, 92]. WebGPU, the successor to WebGL, is a frame-
work that brings first-class support for general-purpose GPU computation to browsers. WebGPU
programs are written in a high-level language, WGSL, which is documented to enforce memory
safety. However, this guarantee is not straightforward, as WGSL is not directly translated into
GPU machine code; instead, WGSL programs are translated to lower-level native GPU languages
before being compiled to vendor-specific (and sometimes closed-source) GPU machine code. There-
fore, WGSL relies on lower-level compilers and runtimes to maintain safety properties during
optimization passes and execution.

If a valid implementation of a programming language specification can break a language’s safety
property, we say that there exists a specification vulnerability. This work identifies a data race

specification vulnerability (DRSV) in WGSL and discusses how it can be assessed and addressed.
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1.1 WGSL Data Race Specification Vulnerability

In many languages, e.g., C and C++, data races cause undefined behavior, as they can lead to ex-
tremely counterintuitive outcomes. However, because these behaviors are not desirable in security-
sensitive contexts (e.g., browsers), languages such as JavaScript and Wasm have defined data races,
albeit with very permissive semantics [84, 85]. Similarly, WGSL utilizes compiler passes and safe
libraries to avoid many types of undefined behavior. However, the languages which WGSL targets
are not free of undefined behavior, and in particular follow C/C++ in giving data races undefined
behavior. A data race occurs when multiple threads concurrently access the same memory location
without proper synchronization. Modern programming languages have adopted special primitives,
e.g., atomic in C++, and volatile in Java, to safely signal when a memory location may be accessed
by multiple threads, with their precise semantics defined in formal memory models [5, 56].
WGSL derives its memory model from C++, with memory accesses specified as either atomic

or non-atomic. Figure 1a shows a WGSL program with two arrays of unsigned integers, i and m,
and two threads performing non-atomic accesses to these arrays. This program contains behaviors
that, in isolation, are undefined in some languages: (1) because memory locations are non-atomic
and there is no synchronization, there are data races between (𝑎, 𝑐) and (𝑏, 𝑐), and (2) while the
race technically makes the program undefined, a possible natural compilation could allow for an
out-of-bounds read if 𝑏 reads the value 𝑐 wrote to i[0]. The potential out-of-bounds read is a
memory safety violation which, in turn, could lead to a vulnerability. The highlighted code in
operation 𝑏, i.e., min(..., 3), shows a check that WGSL compilers include to enforce memory
safety. However, WGSL compilers currently contain no special protections against data races.

The Problem: Optimizing Away Bounds-Checks. Even with the bounds-check inserted, a compiler
for an unsafe lower-level language can optimize the code in a way that inserts a “time-of-check
to time-of-use” (TOCTOU) [2] memory safety violation. Specifically, a compiler for an unsafe
language is free to assume programs do not contain data races. Therefore, when only looking at
the operations in thread 0, the compiler may notice that i[0] is set to 2 and remains unchanged
until it is loaded in 𝑏. Based on a range analysis, it can determine that the call to min is unnecessary
and remove it, leading to an out-of-bounds access if i[0] reads 4 in 𝑏. While it is unlikely a real
implementation would perform the problematic optimization on this particular program, in Sec. 4.1
we describe a more realistic program that could trigger this optimization.

The program in Fig. 1a shows straightforwardly how data races can lead to vulnerabilities,
but memory safety issues can occur due to other surprising behaviors allowed by data races. In
particular, Fig. 1b shows a WGSL program which contains the same data race between 𝑎 and 𝑐 ,
but now the access to m in 𝑐 depends on a separate variable x. Prior work shows how reasonable
implementations might set x to 4–for example if the compiler notices that both x and i[0] contain
the same value (2), and decides to not allocate a register for x, reloading i[0] instead and causing
a potential out-of-bounds access [26].

To recap, WGSL code, i.e., Fig. 1 without the min, is written by application developers, and may
contain out-of-bounds accesses and data races. To avoid out-of-bounds accesses, WGSL compilers
insert bounds-checks when generating lower-level native GPU code. The WGSL specification also
mandates that if a data race occurs, memory accesses should be restricted to in-bounds memory in
order to maintain memory safety [83, Sec. 2.2], but WGSL compilers do not include any special
protections against data races. However, native GPU languages currently give undefined semantics
to data races, allowing the optimizations described above when compiling to vendor-specific
machine code. This mismatch between the WGSL specification and the native language guarantees
means that the bounds-checks can be removed despite the fact that they should not be to maintain
memory safety, creating the WGSL DRSV.
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The Solution: Constraining Optimizations. The optimizations described above must be disallowed
so that the bounds-checks remain, i.e., to maintain memory safety. In Fig. 1a, this can be achieved by
specifying that all accesses to i[0] be atomic. Atomic accesses signal to the compiler that multiple
threadsmightmodify i[0], preventing it frommaking the assumption that i[0] remains unchanged
between 𝑎 and 𝑏. In Fig. 1b, the compiler must be prevented from using the value in i[0] to refer
to x. While this could be accomplished by again making accesses to i[0] atomic, extending this
principle to full programs would require making every memory access atomic, causing unacceptable
performance decreases for many applications. Rather, we propose two properties which ensure
memory safety violations do not occur due to data races while making a minimal set of accesses
atomic. We call these properties the SafeRace Memory Safety Guarantee (SMSG).
The first property of SMSG specifies that slices of programs which contribute to memory

indexing must be race-free, and can be applied in Fig. 1a by making accesses to i[0] atomic. In
more complex code, multiple accesses may contribute to the calculation of the index into m. In
these cases, it is not necessary to do the complete index calculation atomically, i.e., by loading all
memory and performing arithmetic indivisibly. Rather, it is sufficient to ensure that each sub-access
which contributes to the calculation is done atomically, using a backward slicing algorithm which
considers all control, index, and data dependencies of an access. In Sec. 5, we show formally how
this avoids data races on the full index calculation and ensures memory safety.
The second property of SMSG specifies that data races cannot affect the behavior of race-free

program slices, preventing the data race on i[0] from affecting the index into m in Fig. 1b. The
first property can be implemented as a compiler pass, while the second property must be adopted
by intermediate representations which WGSL targets. In Sec. 5 we formally define both properties,
and in Sec. 6 and Sec. 7 we evaluate the performance and practical impacts of adopting them.

1.2 SafeRace: Threat Assessments and Specification Proposals

Given the potential for attackers to exploit the specification vulnerability outlined above, we present
SafeRace, a thorough investigation into how data races can affect memory safety properties when
compiling WGSL (a safe language) to lower-level unsafe languages. We perform threat assessments
that test native frameworks and WebGPU implementations for memory isolation vulnerabilities
and introduce specification proposals which ensure WGSL’s memory safety in the presence of data
races. Our results provide a framework which can inform the development of other languages with
similar compositional designs.

Threat Assessment: Bottom-Up (Sec. 3). First, we assess the potential for programs with simple
memory safety violations, e.g., out-of-bounds accesses without bounds-checks, to cause vulnerabil-
ities. We conduct our assessment in two native GPU frameworks: Vulkan, which runs on Linux
and Android operating systems, and Metal, which runs on macOS and iOS. We test 11 GPUs from 6
vendors and discover two new memory isolation vulnerabilities, one due to uninitialized memory
on AMD GPUs and the other due to out-of-bounds accesses on Apple GPUs.

Threat Assessment: Top-Down (Sec. 4). We develop a fuzzer, WGSLMemSmith, based on WGSL-
Smith [47], to testWGSL implementations for the DRSV, i.e., the data race specification vulnerability
described above. WGSLMemSmith generates random programs that contain potential memory
safety violations due to combinations of data races and out-of-bounds accesses in order to determine
whether WGSL’s DRSV can be triggered by existing compilers. We run WGSLMemSmith on 21
unique compilation stacks, i.e., combination of browser, operating system, and GPU vendor, and
show that the specification vulnerability is either not implemented or is unlikely to be triggered.
Despite our negative result, the vulnerability remains a ticking time bomb, motivating the

development of the specification proposals introduced below. Additionally, our fuzzing finds a
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simpler memory isolation vulnerability due to missing bounds-checks in a pre-release version of
Firefox; this vulnerability has been confirmed and fixed by Mozilla developers.

SafeRace Memory Safety Guarantee (Sec. 5). To fix the WGSL DRSV, we introduce the SafeRace
Memory Safety Guarantee (SMSG), a contract between a higher-level memory-safe language and
lower-level unsafe languages. SMSG consists of two properties: (1) program slices which contribute
to memory indexing, e.g., events 𝑎, 𝑏, and 𝑐 in Fig. 1a, must be race-free, and (2) data races cannot
affect the behavior of race-free slices of programs.

Property 1 can be enforced by an initial pass in WGSL compilers which ensures a program slice
is race-free by translating some non-atomic memory accesses into atomic accesses. We implement
Property 1 in Tint, the compiler for WGSL programs included in Chromium-based browsers. Some
data types in WGSL, e.g., floats, cannot currently be accessed atomically, so our implementation
cannot apply to all possible WGSL programs, e.g., a program with a conditional on floating point
values to determine the index into a memory region. However, our experimental results (Sec. 6)
show that for a set of important benchmarks, no data types which cannot be accessed atomically
are affected by Property 1. We also show that Property 1 has negligible performance impact on
many existing WebGPU applications, including AI inference and general compute applications,
with the only observed impact being a 10% performance overhead in a sorting GPU kernel. Property
2 ensures that data races do not affect race-free slices of programs and must be incorporated
into the frameworks targeted by WGSL, i.e., currently Vulkan, Metal, and DirectX. We augment
WGSLMemSmith with the ability to perform metamorphic fuzzing between programs with and
without data races and find violations of Property 2 on only one (likely buggy) machine, providing
evidence that these frameworks could relatively straightforwardly adopt this constraint (Sec. 7).

Applications Beyond WebGPU (Sec. 8). While the main body of this work focuses on WGSL,
the ideas expressed in our threat assessments and specification proposals apply to other parallel
programming languages. An increasing number of modern languages are being developed that
strive to maintain memory safety through combinations of features like bounds-checked accesses
and ownership of data. At the same time, there is a proliferation of tools that can transpile one
language to another, and new processors and accelerators with diverse architectures are being
developed. This increases the likelihood that layered compilation stacks will becomemore prevalent,
where safety properties must be evaluated across source and target languages.

Contributions. In summary, our contributions are:
• A bottom-up threat assessment that shows memory safety violations can straightforwardly
lead to memory isolation failures in many GPU frameworks; resulting in the discovery of
two new GPU isolation vulnerabilities (Sec. 3).

• A top-down threat assessment using WGSLMemSmith to evaluate whether the WGSL DRSV
is currently exploitable. We show that the DRSV is likely not exploitable today, while also
discovering a memory isolation vulnerability in a pre-release version of Firefox (Sec. 4).

• The SafeRaceMemory Safety Guarantee (SMSG), two properties that when combined provide
memory safety in the presence of data races in WGSL programs (Sec. 5).

• An implementation of SMSG Property 1 as a WGSL compiler pass and an evaluation that
shows it negligibly impacts the performance of a set of WebGPU applications (Sec. 6).

• A metamorphic fuzzing approach implemented in WGSLMemSmith which finds that SMSG
Property 2 is empirically supported by most systems we tested (Sec. 7).

Our artifact for this work is publicly available [51]. As part of responsible disclosure, we have
presented this work to the W3C WebGPU working group and reported our vulnerabilities to the
affected vendors.
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2 Background

2.1 GPU Execution Model

GPU frameworks consist of a host API that executes on the CPU and a programming (or shading)
language which executes on the GPU. Applications allocate resources, transfer data, and schedule
execution using the host API, while shaders are dispatched to run on the GPU asynchronously. We
focus on compute shaders in this paper, which perform general-purpose computation on GPUs.
GPU execution models are hierarchical, with several execution scopes and memory address spaces.
Below, we outline the execution scopes defined in WebGPU and how they relate to different address
spaces. While this list is not exhaustive (especially when considering vendor-specific frameworks,
such as CUDA), it is sufficient for this work.

• Thread: The base unit of computation, executing a stream of instructions1. The private address
space is local to a single thread.

• Workgroup: Threads are organized into sets called workgroups (called thread blocks in CUDA).
All threads in a workgroup share access to theworkgroup address space (called shared memory
in CUDA). The size of this memory is fixed at shader launch time.

• Device: The widest scope of execution on a single GPU, consisting of all threads that execute
as part of the same shader dispatch, i.e., the grid of threads. All threads can access device
memory, which CUDA calls global memory and WebGPU calls the storage address space,
through fixed-length buffers which are allocated and initialized before execution starts.

WebGPU. WebGPU is a high-level GPU frameworkmeant for execution in the browser. To support
portable execution, it must target several lower-level frameworks (and their shader languages):
DirectX (HLSL) on Windows [60], Vulkan (SPIR-V) on Linux and Android [37], and Metal (MSL)
on macOS and iOS [3]. There are currently three major runtimes being developed for WebGPU:
Dawn [1] for Chromium based browsers, wgpu [55] for Firefox, and a WebKit implementation
for Safari [87]. Some browsers, e.g., Chrome, run GPU commands from all tabs on one process,
foregoing any process isolation properties provided by operating systems [67].

2.2 Memory Consistency Models and Data Races

A memory consistency model (MCM) defines the allowed behaviors of shared memory parallel
programs. Both hardware models [32, 64] and language models [5, 56] have been developed, with
language models also specifying what constitutes a data race. In theWGSLMCM, memory locations
are either atomic or non-atomic. Memory locations cannot be type cast, so it is not possible to
non-atomically access an atomic location, like it would be in other languages, e.g., C++. Memory
operations access sets of 8-bit memory locations. A data race occurs under the following conditions:
two threads perform non-atomic operations on the same set of memory locations, with at least
one being a write and without proper synchronization. On the other hand, threads are allowed to
concurrently perform atomic operations on the same set of memory locations without causing data
races. While prior work has shown how mixed-size non-aligned accesses may lead to data races on
atomic locations [33], WebGPU’s memory layout restrictions ensures this cannot occur.
Atomic operations and synchronization operations, e.g., workgroup barriers, can be used to

constrain allowed behaviors and avoid data races. However, data races in WGSL are a global
property, so a race anywhere in a program poses risks. Therefore, in this work, we focus only on
synchronization-free fragments of programs and analyze memory safety in the presence of non-
atomic operations and non-synchronizing atomic operations. Non-synchronizing atomic operations
are called relaxed atomic operations and are available in WGSL and its backend targets.

1In WebGPU, a thread is called an invocation, but we use thread as it is the more general term in parallel programming.
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Prior work has developed semantics that encompasses the common use cases of relaxed atomics
and proved the soundness of compiler transformations like merging or removing atomic opera-
tions [78, 81]. In particular, the semantics of relaxed atomics specify that an operation must happen
indivisibly, i.e., it cannot be split into separate operations. Additionally, the value of a relaxed
atomic load may not be assumed, prohibiting optimizations such as a rematerializing a load from
memory if the compiler has already optimized based on some value for that load. These operations
and restrictions apply in both WGSL and the languages that it targets.
Some languages, e.g., C++, also include volatile accesses, which must be treated by compilers

as having visible side-effects. However, concurrent volatile accesses are still considered a data
race (and hence are undefined), and other arguments against using volatile to solve concurrency
problems exist [5]. Further, WGSL lacks volatile, and SPIR-V disallows it under the Vulkan memory
model, so in this work we use atomic accesses to avoid data races.

2.3 Sources of Memory Safety Violations

WGSL shaders can include behaviors that are normally undefined in low-level languages, including
data races, uninitialized or out-of-bounds accesses, and undefined arithmetic. If left unchecked, these
operations can lead to unexpected outcomes, e.g., crashes or security vulnerabilities. To mitigate
these issues,WebGPU explicitly provides well-defined semantics tomany of these behaviors through
straightforward compiler transformations, e.g., always initializing variables and inserting checks to
avoid undefined arithmetic. Other behaviors, including data races and out-of-bounds accesses, are
classified as dynamic errors. If a dynamic error occurs during shader execution, WebGPU specifies
that memory accesses should affect only memory allocated for that shader [83, Sec. 7.3].

Out-Of-Bounds Accesses. WGSL ensures memory safety by either (1) relying on underlying
framework guarantees; (2) preemptively clamping memory indexes; or, (3) inserting dynamic
checks that avoid executing the memory access if it would occur out-of-bounds. For example,
DirectX guarantees that out-of-bounds reads on device memory in HLSL must return 0, while
out-of-bounds writes are discarded [58]. Vulkan provides an optional feature called robust buffer

access that enables the same protections as DirectX on device memory in SPIR-V at some cost to
performance [39]. However, both DirectX [59] and Vulkan [38, Sec. 3.52.8] leave the behavior of
out-of-bounds accesses in workgroup and private memory undefined. Metal, by not describing
their behavior, implicitly leaves all out-of-bounds accesses undefined [42].

In a program free of data races, the combination of underlying guarantees and inserted bounds-
checks are enough to provide memory safety. However, the presence of data races raises additional
complications. In fact, one of the possible outcomes of clamping an out-of-bounds access is a data
race. For example, consider a program where thread 0 writes to index 4 of an array𝐴 of size 5, while
thread 1 erroneously tries to read index 5 of 𝐴. If out-of-bounds accesses are avoided by clamping
indexes to the size of 𝐴, thread 1 will now read index 4 of 𝐴, creating a data race with thread 0’s
write to index 4. Therefore, it is necessary to consider the effects of data races on all programs with
potential out-of-bounds accesses.

Data Races. Beyond classifying data races as dynamic errors, theWGSL specification is ambiguous
about how they affect program behavior, a fatal flaw due to data races causing undefined behavior
in underlying frameworks. Vulkan is the only one of the three native frameworks with a publicly
available formal memory model, which enforces that programs must be free of data races to be
well-defined [37, App. B]. Metal is based on the C++14 specification, which specifies that data races
lead to undefined behavior [15]. DirectX does not describe the consequences of data races at all,
implicitly leaving their behavior undefined.
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Table 1. Results from our bottom-up threat assessment. We find two new vulnerabilities, highlighted in red,

both which affect memory isolation when applications are run in different processes.

Memory Region: Device Phys. Storage Workgroup

Framework OS Device Process: same diff same diff same diff

Vulkan
Linux

AMD Radeon RX 7900 XT ✓ ✓ ✣ ✓ ✗ ✗
AMD Ryzen 7 5700G ✗ ✗ ✣ ✓ ✓ ✓
Intel Arc A770 Graphics ✓ ✓ ✣ ✓ ✓ ✓
Intel UHD Graphics 770 ✓ ✓ ✣ ✓ ✓ ✓
NVIDIA GeForce RTX 4070 ✓ ✓ ✣ ✓ ✣/✗ ✓

Android
Arm Mali-G710 ✗ ✓ ✗ ✓ ✓ ✓
Qualcomm Adreno 610 ✓ ✓ — — ✗ ✓
Qualcomm Adreno 740 ✓ ✓ — — ✓ ✗

Metal macOS
Intel Iris Plus Graphics ✓ ✓ — — ✓ ✓
Apple M2 ✣ ✣ — — ✗ ✗
Apple M3 ✣ ✓ — — ✓ ✓

✓= No Vulnerability ✣= Out-of-bounds Access Vulnerability ✗= Uninitialized Memory Vulnerability

3 Threat Assessment: Bottom-Up

We first motivate memory safety in WGSL by performing a bottom-up threat assessment; that is,
we aim to explore whether memory safety violations lead to memory isolation vulnerabilities in
WGSL target languages. As GPUs can be utilized by multiple concurrent processes on the same
machine, any memory isolation failure that leaks data between processes is cause for concern.

Our assessment covers two frameworks and three operating systems, Vulkan (Linux and Android)
and Metal (macOS), as well as three address spaces exposed by WebGPU: device, workgroup, and
private memory. Since many browsers run WGSL programs from different tabs on the same process,
we test for memory isolation both when GPU programs are running in different processes and in
the same process. This assessment runs two programs concurrently—a victim and an attacker—and
tests for memory isolation failures due to uninitialized memory and out-of-bounds accesses.
The victim allocates a block of memory, with the size dependent on the type of memory being

tested. Then, the victim launches many GPU threads, with each thread assigned a set of memory
locations within the block of memory. Each thread alternately writes a canary value and a secret
value to even and odd memory locations, respectively. Writing a canary allows us to avoid false
positives where the attacker spuriously reads the secret value and tests whether the attacker is able
to read consecutive out-of-bounds memory values. The victim’s memory is continually re-allocated,
either automatically in the case of private and workgroup memory or manually in the case of device
memory. The victim runs indefinitely until manually stopped.

Like the victim, the attacker allocates a block of memory, and assigns each thread a set of memory
locations. However, the memory locations assigned to each thread of the attacker may be either in
or out-of-bounds of the allocated block of memory. The attacker threads iterate over their assigned
memory locations and search for the canary, which if found in-bounds indicates that the allocated
memory was previously used by the victim and not cleared properly, or if found out-of-bounds
indicates that the attacker is able to read real data outside its allocated block. If the canary is found,
the attacker records the value of the next memory location and the results are analyzed to determine
whether the secret value was found.

Generally, GPU memory references cannot be manipulated using integer arithmetic, e.g., like
pointers in C-like languages, which restricts the ability to write certain algorithms, e.g., arbitrary
tree structures. However, Vulkan has introduced a new type of memory, physical storage buffers,
allowing applications to pass a virtual 64-bit address directly to a shader that can be dereferenced
and manipulated similarly to a pointer. The memory safety implications of physical storage buffers
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is not well understood, so we assess both device memory using traditional buffer bindings and
physical storage buffers in Vulkan.

3.1 Evaluation

Table 1 shows the results of our threat assessment. Overall, we test 11 GPUs from 6 vendors using 2
frameworks and 3 operating systems. Every GPU except the Intel devices show a memory isolation
failure. We do not show results from private memory, as we observed no failures in this region.

3.1.1 Same-Process Mode. This mode follows the setup in many browsers, where GPU programs
are run in the same process. Failures observed in this mode are not considered vulnerabilities by
vendors, as memory isolation is not guaranteed between applications in the same process. However,
in the browser these failures would allow an attacker to read data from another tab if bounds-checks
were optimized away, highlighting the danger posed by WGSL’s specification vulnerability.

Both the AMD Ryzen 7 5700G, an integrated GPU, and the Arm Mali-G710, a mobile GPU, had
uninitialized device memory isolation failures, while the Apple M2/M3 GPUs had out-of-bounds
access isolation failures. Every device we tested that supports physical storage buffers also had
failures. While WebGPU does not support physical storage buffers, our results underscore the need
for caution when adopting new GPU features. In workgroup memory, the AMD Radeon RX 7900 XT,
NVIDIA GeForce RTX 4070, Qualcomm Adreno 710, and Apple M2 had failures. Memory isolation
failures due to uninitialized workgroup memory was reported by prior work [79], which ran tests
in a different-process mode. Our results show that some GPUs which are susceptible to this attack
in the different-process mode also are susceptible in the same-process mode. The NVIDIA GPU is
the only device which had failures due to out-of-bounds accesses in workgroup memory.

3.1.2 Different-Process Mode. We also test memory isolation of GPU frameworks in a different-
process mode, as an attacker running code from the browser might also attempt to steal data from
other applications running on the same machine. In device memory, we observe failures on two
GPUs: the AMD Ryzen 7 5700G and the Apple M2. These failures can be exploited by a malicious
process on the same machine to leak data from victim applications or construct covert channels.
We describe each of these vulnerabilities below. Additionally, we observe uninitialized workgroup
memory isolation failures on the AMD Radeon RX 7900 XT, Qualcomm Adreno 740, and Apple M2,
replicating results from previous work [79].

AMD Uninitialized Memory Vulnerability. This vulnerability allows an attacker to read uninitial-
ized memory which can contain data written from another process, if the attacker uses AMD’s
open-source Mesa drivers. We confirmed that multiple AMD-integrated GPUs are affected, both
the Ryzen 7 5700G in our study and a Ryzen 5 5600H. This vulnerability was confirmed by AMD,
assigned a CVE [21], and a patch for the AMD drivers was released.

Apple M2 Out-Of-Bounds Access Vulnerability. This vulnerability allows an attacker to access
data from another process by performing out-of-bounds accesses. The extent of this vulnerability is
limited—only reliably leaking one 32-bit value before driver or hardware protections seemed to kick
in (perhaps in response to a previous vulnerability that allowed arbitrary access to out-of-bounds
memory [20]). Nevertheless, we show that the remaining vulnerability is enough to construct a
reliable (albeit slow) covert channel between two processes. This vulnerability, which affects Apple
M1 and M2 GPUs, has been reported to and confirmed by Apple.

4 Threat Assessment: Top-Down

Our top-down threat assessment aims to determine whether the WGSL data race specification
vulnerability (DRSV) is exploitable today. We perform this assessment through a large-scale fuzzing
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1 i n t min ( i n t a , i n t b ) { r e t u r n ( b<a ) ? b : a ; }
2

3 vo id f ( i n t ∗ r e s t r i c t idx , i n t ∗ r e s t r i c t data , i n t ∗ r e s t r i c t ou tpu t ) {
4 i f ( ∗ d a t a == 0 )
5 ∗ i dx = 1 7 ;
6 e l s e
7 ∗ i dx = 1 9 ;
8 i f ( ∗ i dx < 1 0 0 )
9 ∗ ou tpu t = da t a [min ( ∗ idx , 9 9 ) ] ;
10 }

Listing 1. Extension of Fig. 1 showing a C program which exemplifies WGSL’s data race specification

vulnerability. Pointers are restricted to avoid aliasing, as in WGSL.

1 %data_0 = load i32 , ptr %data , align 4
2 %data_is_0 = icmp eq i32 %data_0 , 0
3 %idx_0 = select i1 %data_is_0 , i32 17, i32 19
4 store i32 %idx_0, ptr %idx , align 4
5 %idx_0_ext = zext nneg i32 %idx_0 to i64
6 %data_ptr = getelementptr inbounds i32 , ptr %data , i64 %idx_0_ext
7 %data_val = load i32 , ptr %data_ptr , align 4
8 store i32 %data_val , ptr %output , align 4

Listing 2. Compiler optimizations can turn the code in List. 1 into this LLVM intermediate representation.

campaign with WGSLMemSmith, an extension of the WGSLSmith fuzzer [47] which we developed.
The design of WGSLMemSmith is informed by understanding how compilers might optimize away
bounds-checks like the one in Fig. 1. Therefore, we first extend the example from Fig. 1 to examine
how valid compiler passes in real implementations might introduce memory safety violations, then
show how WGSLMemSmith generates patterns which could trigger the specification vulnerability.

4.1 Extended Example

Listing 1 shows C code that implements the same out-of-bounds protections as the GPU example
in Fig. 1. We use C here because it allows us to utilize the LLVM compiler project to easily explore
optimization passes. In contrast, optimizing compilers for GPUs are either closed source or don’t
provide tools that allow fine-grained control of optimizations in an easily configurable way. Also,
while there are differences in intermediate representations built specifically for GPUs, the concepts
necessary to understand the specification vulnerability in WGSL can be explored in LLVM.
In this example, assume that the length of the data array is 100. The code in red, i.e., the min

check, would be added by a compiler for a memory-safe language. The rest of the code would be
written by an application developer (in the memory-safe language). In a single-threaded context,
there is no possibility of an out-of-bounds access in this code, but in code running on a parallel
processor a separate thread might create a data race on *idx, writing a value greater than 99.
The LLVM code in List. 2 shows the results of emitting LLVM from the C code using clang

and running the following LLVM optimization passes using opt: inline, mem2reg, early-cse,
instcombine, and simplifycfg. In the resulting code, a register %idx_0 is allocated that holds the
results of the conditional check on the value of ptr %data (List. 2 lines 1-3), which corresponds
to the conditional on data in List. 1 lines 4-7. The value of %idx_0 is stored to ptr %idx (List. 2
line 4), which corresponds to the two stores to idx in List. 1 lines 5 and 7. Instead of reloading the
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Thread 0
a: i[0] = 2
b: let r0 = m[i[0]]

(a) Basic Pattern. Thread 1 races

on i[0], writing an out-of-bounds

value, e.g., 4.

Thread 0
i[0] = 500000
let r0 = m[1 + i[0]]

(b) Undefined Arithmetic Pattern.

Thread 1 writes a value that causes

overflow, e.g., 2 billion.

Thread 0
i[0] = 0
var x = 0
if (i[0] > 0) x = 4
let r0 = m[x]

(c) Control-Flow Pattern. Thread 1

writes a value that causes the con-

ditional to execute, e.g., 1.

Fig. 2. The three types of patterns that WGSLMemSmith generates. Here, i is a signed 32-bit integer array of

size 1 and m is an unsigned 32-bit integer array of size 4 in either device, workgroup, or private memory.

value of ptr %idx, the value of %idx_0 is used (extended to an i64) to index into ptr %data since
the compiler assumes the value of ptr %idx has not changed (List. 2 lines 5-6). This also allows
the compiler to provably remove the min check in List. 1 line 9 when loading from ptr %data_ptr
(List. 2 line 7). Note that the conditional in List. 1 line 8 is also optimized away in List. 2.

In this example, the compiled code is still safe, as the compiler uses %idx_0 instead of loading
from ptr %idx. However, in a more complex program, extra computation could cause register
pressure, leading to %idx_0 being spilled to memory before being used to index into ptr %data. A
valid optimization could then rematerialize %idx_0 from ptr %idx, saving a stack slot2. Given a
data race on ptr %idx, this value might be larger than the size of data, causing an out-of-bounds
access. As far as we know, this optimization is not in LLVM, although it has been proposed [46].
This exploration shows that if the DRSV in WGSL is exploitable, it is likely due to programs that
are susceptible to these types of optimizations. We now describe the base shaders WGSLMemSmith
generates and then show how patterns which might trigger these optimizations are incorporated
into the shaders.

4.2 Shader Generation

WGSLMemSmith generates shaders in a single pass. It currently supports a subset of WGSL types
and expressions, consisting of assignment statements, integer arithmetic, conditionals, and loops.
Assignment statements have a variable number of operands in their expressions—by default between
1-3. Optionally, a setting register pressure can be turned on, which increases the number of operands
in expressions (up to 20) and prioritizes using local variables in order to increase the number of
registers the compiler might allocate. Overall, there are 16 parameters when generating shaders
that can be modified at runtime. This allows us to run comprehensive fuzzing campaigns that
randomly generate shaders with different parameters at each iteration.

Alongwith the base shader,WGSLMemSmith generates racy patterns that seek to induce compiler
optimizations that could trigger the WGSL DRSV. Patterns are based on templates instantiated
during the generation process, with the three types of patterns shown in Fig. 2. For example, the
code in Fig. 2a is an example of a Basic pattern, including potential data races and out-of-bounds
accesses. As part of pattern generation, conditionals like the ones in lines 4-6 of List. 1 are included,
with condition and assignment values randomly chosen. Patterns can be nested in conditionals,
loops, or even inside other patterns themselves. Along with basic patterns, WGSLMemSmith
generates patterns with other characteristics:

2This same optimization was shown to be problematic when bounding certain data race behaviors in prior work [26].
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Fig. 3. WGSLMemSmith fuzzing time broken down by compilation stack.

• Memory Region. WGSLMemSmith generates patterns which perform potential out-of-
bounds accesses on device, workgroup and private memory, as different memory regions
have different semantics and as such, might each expose different behavior.

• Undefined Arithmetic. Following C++, native GPU languages leave the behavior of signed
integer overflow, division/modulo by zero, and division/modulo of the most negative integer
by -1 as undefined. WGSL compilers include checks to avoid undefined behavior when
performing arithmetic. However, a compiler could determine these checks are unnecessary
and remove them (e.g., through range analysis). Figure 2b shows an example of integer
overflow, where the calculation of the index into m can overflow due to the data race if the
arithmetic checks inserted by WGSL compilers are optimized away.

• Control Flow. The calculation of an index into memory can be affected by control instruc-
tions. If any memory locations that determine the outcome of the conditional participate in a
data race, then it is possible that the calculated index may be out-of-bounds. For example,
Fig. 2c shows an example where a data race could cause the variable x to be assigned to 4,
even though the compiler determines that the conditional will not execute.

Inspired by previous work that use parallel strategies for memory model testing on GPUs [50],
WGSLMemSmith generates programs that run thousands of threads in parallel, with all threads
executing patterns and racing with other threads on memory locations used to calculate indexes.
Due to non-determinism in multi-threaded execution, each generated shader runs for 3 iterations
to increase the chance of observing vulnerabilities.

4.3 Evaluation

We developed a website which runs shaders generated by WGSLMemSmith through WebGPU’s
JavaScript API and utilized it to test 21 unique compilation stacks. Overall, WGSLMemSmith ran
for over 81 hours and tens of millions of unique thread executions, with Fig. 3 breaking down the
testing time on different compilation stacks. While we ran fuzzing on both the Chrome and Edge
web browsers, we combine these results in our report as they are both built on the Chromium
open-source browser and rely on the same underlying WebGPU implementation.
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Table 2. Percentage of shaders showing memory isolation failures on an Apple M3/M2 GPU with bounds-

checks disabled.

Memory

Private Workgroup Device

Pattern M3 M2 M3 M2 M3 M2

Basic: 4.5% 0.9% 4.5% 3.3% 37.3% 18.6%
UndefArith: 5.4% 4.3% 3.0% 3.7% 3.6% 3.1%
ControlFlow: 8.2% 6.1% 1.0% 0.0% 37.8% 20.4%

4.3.1 Testing for Vulnerabilities. Our fuzzing campaign led to a negative result–data races did
not cause memory isolation vulnerabilities due to bounds-checks being optimized away. While
this is not a formal proof of the absence of such optimizations, it shows that exploiting the WGSL
specification vulnerability is at the least very difficult, and compilers just might not implement the
types of optimizations that could cause it today. Despite the lack of observable security concerns,
the specification vulnerability is still a ticking time bomb for WGSL’s memory safety, and there is
no guarantee that compilers won’t implement it in the future.
While testing a pre-release version of Firefox on a laptop running Windows with a Qualcomm

GPU, we observed non-zero values when reading from out-of-bounds indexes inworkgroupmemory.
Our investigation showed that the Firefox WGSL compiler was not adding bounds-checks correctly
for workgroup and private memory. This vulnerability was confirmed by Mozilla privately and
fixed in its implementation of WebGPU [90]. As WebGPU was not available in Firefox’s release
browser at the time of our discovery, this vulnerability luckily did not impact most users.

4.3.2 Mutation Testing. To provide more confidence in our testing, we perform mutation test-
ing [22] where we analyze the ability of WGSLMemSmith to observe memory isolation failures
in the absence of bounds-checks. These could be missing due to compiler bugs, e.g., the Firefox
vulnerability described in Sec. 4.3.1, or unsound optimizations in the presence of data races, e.g., the
examples in Fig. 1 and List. 1. We utilize a flag in the Chromium browser to disable bounds-checks
on two GPUs, an Apple M2 and M3. As shown in Sec. 3.1, when programs written in Apple’s
native Metal shading language with memory safety violations were run, these GPUs revealed
memory isolation failures. Therefore, we would expect our fuzzing to catch these failures with
bounds-checks disabled. For each mutation testing trial, WGSLMemSmith is configured to produce
one of the three types of patterns from Fig. 2, i.e., Basic, UndefArith, and ControlFlow:
Each pattern type is then combined with each memory region, private, workgroup, or device,

and shaders are generated and run for five minutes on each GPU. The results in Tab. 2 show
the percentage of generated shaders that led to memory isolation failures on each GPU. Every
combination except control flow dependence and workgroup memory on the M2 showed isolation
failures, validating that WGSLMemSmith can observe failures (in most cases) due to data races if
bounds-checks are removed.

4.3.3 Register Pressure. We analyze whether the shaders generated by WGSLMemSmith are
causing register pressure on various GPUs, as we discussed in Sec. 4.1 how this could lead to
dangerous optimizations. We utilize a Vulkan extension, pipeline executable properties, which
allow developers to analyze statistics about shaders. We first randomly generate a shader with
WGSLMemSmith using the same limits as in our fuzzing campaign. Next, we use the Tint WGSL

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 297. Publication date: October 2025.



297:14 Reese Levine, Ashley Lee, Neha Abbas, Kyle Little, and Tyler Sorensen

compiler to generate a SPIR-V shader, set up a short program that accepts the shader as input,
compiles it, and returns the shader statistics, which we report for three GPUs below.

Intel Arc A770 Graphics. There are three relevant statistics reported by Vulkan on this GPU: max
live registers, spill count, and fill count. To the best of our knowledge, spill count and fill count
measure the number of register spills and re-load instructions which the compiler adds to the
shader. For the shader we test, the max live registers is reported as 331, the spill count as 683, and
the fill count as 1952, showing that register pressure is indeed occurring.

AMD Radeon RX 7900 XT. Several relevant statistics are reported by Vulkan on this GPU: compiler
VGPR/SGPRs, used VGPR/SGPRs, and scratch memory usage. VGPR (SGPR respectively) stands
for vector (scalar) general purpose registers, which are used when each thread in a SIMD unit
operate on different (the same) data. For the shader we test, the compiler reports 256 available
VGPRs and 106 available SGPRs, and uses 256 VGPRs as 37 SGPRs. Our current implementation
of WGSLMemSmith focuses on maximizing registers per thread which explains why SGPRs are
not maximized—future versions of WGSLMemSmith might be able to address this deficiency. We
observe that the final statistic, scratch memory usage is 0 when VGPRs are not maximized, and
increases when they are (for our test shader, the value is 496 bytes). Therefore, we can infer that
our test shader is causing register spilling on this GPU.

NVIDIA GeForce RTX 4070. The only statistic reported by Vulkan on this GPU is used register
count—for our test shader, this value is reported as 255. This number matches the reported maximum
number of registers per thread on NVIDIA’s Ada GPU architectures [14], meaning that the shader
is at least utilizing all available registers.

5 The SafeRace Memory Safety Guarantee

Our threat assessments, along with vulnerabilities found in prior work [40, 48, 65, 79], show
that GPUs memory isolation vulnerabilities continue to be a serious concern. And although the
specification vulnerability in WGSL does not currently seem exploitable, the optimizations which
would make it so are valid and could legitimately be implemented at any time by GPU compilers.
Therefore, we introduce the SafeRace Memory Safety Guarantee (SMSG), which fixes the WGSL
DRSV by ensuring that bounds-checks are robust in the presence of data races.
Consider a WGSL program 𝑃𝑢 , which may contain unsafe behaviors. When 𝑃𝑢 is compiled to

lower-level languages, it is transformed into 𝑃𝑠 by inserting checks to guard against unsafe behavior,
e.g., min in Fig. 1. However, as described in Sec. 1.1 and Sec. 4.3.1, WGSL compilers include no special
protections against data races and may in fact introduce data races. Compiler transformations in
the lower-level language can transform 𝑃𝑠 into a new program 𝑃 ′

𝑠 . Under current specifications,
if either 𝑃𝑢 or 𝑃𝑠 contain data races, 𝑃 ′

𝑠 may contain memory safety violations, e.g., Fig. 1 with
the min check removed. To address this, SMSG consists of two properties which when combined
ensure that 𝑃𝑢 is safe from the DRSV. This in turn ensures that in the absence of other undefined
behavior (or compiler bugs), valid transformations from 𝑃𝑠 to 𝑃 ′

𝑠 are also safe.

• Property 1: Race-Free Indexing Slices: Program slices which contribute to memory
indexing must be race-free.

• Property 2: Data Race Non-Interference: In the absence of other undefined behavior, data
races cannot affect the behaviors of race-free slices of programs.

We now formally describe a logic for constructing program slices which contribute to memory
indexing and walk through a couple examples of how to apply this logic.
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Table 3. SafeRace Memory Logic

Program 𝑃 The program under analysis

Memory Scope 𝑅
𝑝 |𝑤 |𝑑
𝑖

Private/workgroup/device
memory region

Memory Type 𝑅
{𝑝 |𝑤 |𝑑 }𝑛𝑎
𝑖

Non-atomic memory
𝑅
{𝑤 |𝑑 }𝑎
𝑖

Atomic memory

Memory Accesses

𝐴
{𝑟 |𝑤 |𝑖 }
𝑥 Read/write/initialization access

𝐴𝑥 .𝑅𝑖 Memory region accessed
𝐴𝑥 .𝐼 Index dependencies
𝐴𝑥 .𝐶 Control dependencies
𝐴𝑥 .𝐷 Data dependencies
𝐴𝑥 .𝑆 Slice: (𝐴𝑥 .𝐼 ∪𝐴𝑥 .𝐶 ∪𝐴𝑥 .𝐷 )+

Applying SMSG
Property 1 ∀𝐴𝑦 ∈ (𝐴𝑥 .𝐼 ∪𝐴𝑥 .𝐶 ) : mkAtomic(𝐴𝑦 .𝑅𝑖 ) ∧
(RaceFreeSlice) ∀𝐴𝑧 ∈ 𝐴𝑦 .𝑆 : mkAtomic(𝐴𝑧 .𝑅𝑖 )

Property 2 ∀𝐴𝑥 , 𝐴𝑦 ∈ 𝑃.𝐴 : 𝐴𝑥 ≠ 𝐴𝑦 ∧𝐴𝑦 ∉ 𝐴𝑥 .𝑆 =⇒
(RaceInterference) bhvrs(𝐴𝑥 ) | 𝑃.𝐴 ≡ bhvrs(𝐴𝑥 ) | 𝑃.𝐴 \𝐴𝑦

5.1 A Memory Logic for WGSL

Table 3 shows the constructs used to reason about memory safety in WGSL and the languages it
targets. WGSL provides a more restricted programming model than other low-level languages, e.g.,
C++, which we take advantage of to construct our memory logic. A program 𝑃 operates on data
which is either constant, e.g., literals and program constants, or in disjoint memory regions 𝑅3. A
memory region’s name is denoted using a subscript, e.g., 𝑅𝑖 is the memory region referred to by
name 𝑖 . Memory regions can either be private variables/arrays (𝑅𝑝

𝑖
), or shared workgroup/device

memory (𝑅𝑤
𝑖
/𝑅𝑑𝑖 ). Shared memory regions can either be non-atomic (𝑅{𝑤 |𝑑 }𝑛𝑎

𝑖
) or atomic (𝑅{𝑤 |𝑑 }𝑎

𝑖
).

A memory region is a fixed-size set of 8-bit memory locations. The type of all memory locations
in a region is the same, with casting between atomic and non-atomic references to the region
prohibited. The set of static memory accesses within a program, i.e., those present in the source code,
is represented by 𝐴. Read and write accesses are represented by 𝐴𝑟/𝐴𝑤 , respectively. Declarations
of input buffers to a program are represented as a special initialization access type𝐴𝑖 . Each memory
access is given a unique id 𝑥 which we denote using a subscript on 𝐴. Each access 𝐴𝑥 has several
fields, namely: 𝐴𝑥 .𝑅𝑖 denotes the memory region accessed; 𝐴𝑥 .𝐼 are the index dependencies, i.e.,
the set of accesses which potentially contribute to the calculation of the index into 𝐴𝑥 ; 𝐴𝑥 .𝐶 are the
accesses on which 𝐴𝑥 is control-dependent; and 𝐴𝑥 .𝐷 are the accesses on which 𝐴𝑥 is potentially
data-dependent, which for a read access 𝐴𝑟

𝑥 are the set of accesses it may read from, and for a write
access 𝐴𝑤

𝑥 are the set of accesses which determine the value written.
Because our approach is based on static analysis, we say that an access𝐴𝑥 is potentially dependent

on an access 𝐴𝑦 if there exists an assignment of values, e.g., due to data races or conflicting atomic
accesses, to other accesses in the program that causes 𝐴𝑥 to be dependent on 𝐴𝑦 . Intuitively,
this means conditionals based on shared memory read accesses may resolve to any branch and
assuming a write access with an index dependency on a shared memory read access may write

3Writable memory bound to a shader cannot alias in WebGPU [82, Sec. 14.1].
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1 var<dev i ce > a : a r ray < i32 , 1 > ; 𝐴𝑖
0 : {𝑅

𝑑𝑛𝑎
𝑎 }

2 var<workgroup > b : ar ray < i32 , 1 > ; 𝐴𝑖
1 : {𝑅

𝑤𝑛𝑎
𝑏

}
3 var<workgroup > c : a r ray < i32 , 1 > ; 𝐴𝑖

2 : {𝑅
𝑤𝑛𝑎
𝑐 }

4 var<dev i ce > d : a r ray < i32 , 1 0 > ; 𝐴𝑖
3 : {𝑅

𝑑𝑛𝑎
𝑑

}
5 fn shade r ( ) {
6 a [ 0 ] = 5 ; 𝐴𝑤

4 : {𝑅𝑎}
7 b [ 0 ] = 1 ; 𝐴𝑤

5 : {𝑅𝑏 }
8 var x : i 3 2 =3 ; 𝐴𝑤

6 : {𝑅𝑝𝑛𝑎𝑥 }
9 i f ( a [ 0 ] >5 ) 𝐴𝑟

7 : {𝑅𝑎, 𝐷 = {𝐴𝑤
4 }}

10 x =100 ; 𝐴𝑤
8 : {𝑅𝑥 ,𝐶 = {𝐴𝑟

7}}
11 c [ 0 ]= b [ 0 ] ; 𝐴𝑟

9 : {𝑅𝑏 , 𝐷 = {𝐴𝑤
5 }} 𝐴𝑤

10 : {𝑅𝑐 , 𝐷 = {𝐴𝑟
9}}

12 𝐴𝑟
11 : {𝑅𝑥 , 𝐷 = {𝐴𝑤

8 , 𝐴
𝑤
6 }}

13 𝐴𝑟
12 : {𝑅𝑐 , 𝐷 = {𝐴𝑤

10}}
14 𝐴𝑟

13 : {𝑅𝑑 , 𝐼 = {𝐴𝑟
11, 𝐴

𝑟
12}}

15 var r =d [ x+1+ c [ 0 ] ] ) ; 𝐴𝑤
14 : {𝑅

𝑝
𝑟 , 𝐷 = {𝐴𝑟

13}}
16 }

Listing 3. WGSL pseudocode illustrating how to reason using our memory logic.

to any location in a memory region 𝑅𝑖 . This ensures that any calculation of 𝐴𝑥 ’s dependencies is
sound, but potentially an over-approximation.
The transitive closure of the union of 𝐴𝑥 .𝐼 , 𝐴𝑥 .𝐶 , and 𝐴𝑥 .𝐷 is called the access slice, or 𝐴𝑥 .𝑆 . A

slice represents all memory accesses which may affect 𝐴𝑥 , including its reachability, the memory
locations it accesses, the value stored if 𝐴𝑥 ∈ 𝐴𝑤 , and the value it returns if 𝐴𝑥 ∈ 𝐴𝑟 . 𝐴𝑥 .𝑆 , along
with its constituent sets, can be obtained via static program slicing based on a data-flow and
control-flow analysis [89].
The definition of an access now allows us to precisely define how to reason about programs

with SMSG. Property 1 can be enforced by a compiler in a safe high-level language via the rule
RaceFreeSlice in Tab. 3. This rule specifies that given an access 𝐴𝑥 , for all accesses 𝐴𝑦 in (𝐴𝑥 .𝐼 ∪
𝐴𝑥 .𝐶), if 𝐴𝑦 .𝑅𝑖 is a shared memory region it must be made atomic. Additionally, for all accesses
𝐴𝑧 in the transitive closure of 𝐴𝑦 .𝑆 , if 𝐴𝑧 .𝑅𝑖 is a shared memory region, it also must also be made
atomic (note that mkAtomic() is a no-op for private memory regions and that when applying
RaceFreeSlice to 𝐴𝑥 , 𝐴𝑥 .𝐷 is not included because the data dependencies of 𝐴𝑥 do not determine
the memory locations in 𝑅𝑖 𝐴𝑥 accesses). Intuitively, the program slice for each index and control
dependency of an access is now race-free as all contributing memory accesses have been made
atomic, preventing the optimizations discussed in Sec. 1.1 and Sec. 4.1.
Property 2, which must be adopted by the memory-safe language and the languages in its

compilation stack, specifies that if a memory access 𝐴𝑦 is not in 𝐴𝑥 .𝑆 , it cannot affect the result
of 𝐴𝑥 even if it participates in a data race. Therefore, when running a program 𝑃 , the possible
behaviors of𝐴𝑥 , i.e., bhvrs(𝐴𝑥 ), with𝐴𝑦 included in 𝑃 must be equivalent to the possible behaviors
of 𝐴𝑥 when running 𝑃 with 𝐴𝑦 removed.

5.2 Applying SMSG

First, we show how SMSG can be applied in the simple examples in Fig. 1, and then move on to a
more complex example which includes control flow and multiple types of dependencies.

Simple Example. In both programs in Fig. 1, there are two memory regions which we assume are
device-scoped—i (𝑅𝑑𝑛𝑎𝑖 ) and m (𝑅𝑑𝑛𝑎𝑚 )—and one private memory region—x (𝑅𝑝

𝑥 ). In Fig. 1a, the access
to m is index-dependent on the access to i[0], so applying RaceFreeSlice means compiling 𝑅𝑑𝑛𝑎𝑖
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to 𝑅𝑑𝑎𝑖 , thereby making all accesses to i[0] atomic. Because accesses are now atomic, the compiler
cannot assume that i[0]’s value won’t change between accesses, and thus, cannot erroneously
remove the bounds-check. In Fig. 1b, 𝑅𝑝

𝑥 is race-free as it is a private memory region, and applying
RaceInterference means that the data race on 𝑅𝑑𝑛𝑎𝑖 cannot affect it.

Larger Example. Listing 3 shows an example of how to apply this logic to a program 𝑃𝑢 . There
are six memory regions in 𝑃𝑢 : 𝑅𝑑𝑛𝑎𝑎 , 𝑅𝑤𝑛𝑎

𝑏
, 𝑅𝑤𝑛𝑎

𝑐 , 𝑅𝑑𝑛𝑎
𝑑

, 𝑅𝑝
𝑥 , and 𝑅

𝑝
𝑟 . All memory events, including

the declaration of buffers on lines 1-4, are represented as memory accesses. Only non-empty base
fields are shown, with the type of a memory region omitted after its first reference.
Accesses and their dependencies are shown either above or on the line they reference, so the

accesses on lines 12-15 all correspond to the code in line 15. Working backwards from line 15, 𝐴𝑟
13

is index-dependent on 𝐴𝑟
11 and 𝐴

𝑟
12. 𝐴

𝑟
11 is potentially data-dependent on 𝐴𝑤

6 and 𝐴𝑤
8 , while 𝐴

𝑤
8 is

control-dependent on𝐴𝑟
7. Meanwhile,𝐴𝑟

12 is data-dependent on𝐴
𝑤
10, which in turn is data-dependent

on 𝐴𝑟
9. At this point, every memory region besides 𝑅𝑑 and 𝑅𝑟 in 𝑃𝑢 is contained in accesses in 𝐴𝑟

13.𝑆 .
Assuming the absence of data races, which a compiler for an unsafe language can do since all

memory regions are non-atomic, all bounds-checks in this example could be provably removed as
the index on line 15 evaluates to 5. However, data races may cause these values to change in ways
that break memory safety. For example, a race on c[0] or b[0] could cause their values to increase
even after the compiler has removed the bounds check, as Fig. 1 and List. 1 showed. Similarly, a
race on a[0] could cause the code in the conditional to execute despite the compiler optimizing
based on the determination that it is dead code4.

When compiling from 𝑃𝑢 → 𝑃𝑠 , applying Property 1 via RaceFreeSlicemeans compilingmemory
regions as follows: 𝑅𝑑𝑛𝑎𝑎 → 𝑅𝑑𝑎𝑎 , 𝑅𝑤𝑛𝑎

𝑏
→ 𝑅𝑤𝑎

𝑏
, and 𝑅𝑤𝑛𝑎

𝑐 → 𝑅𝑤𝑎
𝑐 . Legal transformations 𝑃𝑠 → 𝑃 ′

𝑠

cannot assume the value of atomic memory locations, prohibiting optimizations that both remove
the bounds check and rematerialize from the shared memory regions in accesses in 𝐴𝑟

13.𝑆 . The
other memory region in accesses in 𝐴𝑟

13 .𝑆 , 𝑅
𝑝
𝑥 , is not made to shared memory, RaceInterference

ensures that its value cannot be affected by data races elsewhere in the program.

5.3 SMSG Soundness

We now argue that the rules for applying SMSG ensure that data races cannot lead to memory
safety violations. Consider a program 𝑃𝑢 which contains a memory access 𝐴𝑥 that may attempt to
read out-of-bounds memory. In an initial compilation from 𝑃𝑢 → 𝑃𝑠 , e.g., WGSL to a lower-level
language, 𝐴𝑥 is compiled to 𝐴′

𝑥 , which is guaranteed to not read out-of-bounds due to checks
added by the compiler. Now, assume a valid transformation 𝑇 in the lower-level language compiles
𝐴′
𝑥

𝑇−→ 𝐴′′
𝑥 , and that 𝐴′′

𝑥 no longer contains bounds-checks and leads to a memory safety violation.
If Property 1 is applied correctly, there are no data races in 𝐵, the set of memory accesses in

𝐴′
𝑥 .𝐼 and 𝐴′

𝑥 .𝐷 and in their slices. Therefore, any analysis the compiler performs to remove the
bounds-check in 𝐴′′

𝑥 while considering the values of memory accesses in 𝐵 is safe. The only other
source of data races in 𝑃𝑠 are accesses not in 𝐵, which cannot affect the behaviors of accesses in 𝐵

according to Property 2. As 𝐵 is exactly the set of accesses that contribute to the calculation of 𝐴′
𝑥 ’s

(and therefore𝐴′′
𝑥 ’s) index,𝐴′

𝑥 and𝐴′′
𝑥 are safe. This means that if𝑇 is a valid transformation, it must

have introduced the memory safety violation due to behaviors other than data races, validating our
claim that 𝑃𝑠 is safe in the presence of data races.

4Since it is dead code, a compiler might decide to eliminate it, in which case 𝑅𝑎 does not need to be made atomic. However,
GPUs execute in a single-program multiple-data manner, so dead code in one thread may not be dead in another and a
compiler may decide to leave it in place.
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Complete Memory Safety in WebGPU. Enforcing SMSG ensures that data races no longer lead to
globally undefined behavior or memory safety violations due to out-of-bounds accesses. However,
to provide complete memory safety, WebGPU needs to guarantee that no possible WGSL program
can lead to undefined behavior in its lower-level language targets. The current WGSL specification
avoids undefined behavior by classifying its common sources, including data races, as dynamic
errors, but as we have shown this is not necessarily sufficient. Therefore, we analyze the other
sources of dynamic errors mentioned in the specification, which are: aliased writable memory
bound to a shader [83, Sec. 7.3], mismatched memory layouts [83, Sec. 13.4], unbounded loops [83,
Sec. 9.4.3], and an erroneous graphics-specific vertex value [83, Sec. 12.3].
Non-aliasing of memory is enforced by the WebGPU host API [82, Sec. 14.1], and while mis-

matched memory layouts between the host/shaders can affect correctness of programs, the values
in memory do not change the analysis used to apply SMSG. We do not consider graphics pipelines,
leaving unbounded loops as the last source of dynamic errors. Unlike in languages like C++, where
unbounded loops with side effects are useful for many tasks, GPU languages are generally not
designed for long-running programs. In fact, most GPU languages currently lack a well-specified
forward progress model [80], so even unbounded loops with side effects often lead to crashes
or other issues. The lack of support for unbounded loops has impacts on memory safety, and
open-source WGSL compilers insert some code in response to the fact that the Metal compiler
might optimize away bounds-checks due to considering infinite loops without side effects undefined
behavior [35]. While so far this approach seems be successful, the lack of specificity around the
behavior of unbounded loops means that we currently only apply SMSG guarantees to source
programs that are free of behaviors like unbounded loops.

5.4 Other Memory Safety Approaches

There are several other approaches which could be used to avoid the removal of bounds-checks
and help maintain memory safety in WGSL. The first, and simplest, is to simply enforce that all
memory accesses are made atomic when compiling from WGSL to lower-level GPU languages,
which would remove data races from all programs. However, even though the relaxed memory
order semantics for atomics which we use are less costly than more heavyweight memory orders
like acquire/release and sequentially consistent, our results in Sec. 6.1 show that in cases where
some accesses must be made relaxed atomic operations, there is already a performance decrease.
Making every access atomic likely would cause unacceptable performance for many applications.
Another option is LLVM’s unordered atomic ordering [54, Atomic Memory Ordering Con-

straints] for all accesses, which provides weaker semantics than relaxed but prevents rematerial-
izing loads and is used by LLVM to match Java’s memory model. However, the languages which
WGSL targets, e.g., SPIR-V, Metal, and HLSL, do not all explicitly support unordered atomics yet.
To implement this solution, the changes in GPU compiler implementations and the performance of
using unordered atomics would need to be carefully studied and tested. Additionally, SMSG can be
integrated with unordered atomics, as Property 1 can translate access dependencies to unordered
atomics instead of relaxed atomics, while Property 2 is weaker than unordered atomic guarantees.
A different style of approach is to integrate some form of “unoptimizable checks” into WGSL

and the languages it targets. For example, LLVM has a concept of linkage types [54, Linkage Types],
including types like weak which prevent a compiler from removing unreferenced global variables
and functions. If the min function is declared using this attribute, the compiler would therefore not
be able to remove it. While this approach is promising, unoptimizable checks would require a large
amount of coordination and implementation work across WGSL and the languages it targets. Also,
to our knowledge, the guarantees offered by existing unoptimizable checks like linkage types are
not formally defined in relation to existing sources of undefined behavior such as data races. On the
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other hand, SMSG is a novel solution to memory safety in the presence of data races using existing
language constructs that are preserved across all target languages, i.e., relaxed atomic accesses.

6 Implementing SMSG Property 1

We implemented Property 1 as a pass in Tint, the WGSL compiler included in the Dawn WebGPU
implementation used by Chromium. While Tint is not an optimizing compiler, it does include
significant infrastructure for performing passes on WGSL programs, e.g., inserting bounds-checks
and ensuring arithmetic expressions are well defined. Tint converts WGSL programs into an
intermediate representation (IR) in static single-assignment (SSA) form and includes utilities for
traversing and modifying the IR.
Our pass consists of two phases: a backwards slicing phase and a forward conversion phase.

In the slicing phase, the RaceFreeSlice rule is applied to compute the sets of accesses which
contribute to an access 𝐴𝑥 . In the conversion phase, non-atomic memory regions are converted to
atomic regions, and every usage of these regions is updated to atomically load or store to them.
Our implementation accounts for nested types, e.g.., arrays and structs, handles control flow, e.g.,
loops and branches, and performs complete interprocedural analysis. In the process of writing
our implementation, we encountered several constructs that either provided opportunities for
optimization or exposed limitations in WGSL. We now detail these constructs as they provide
interesting avenues for future WGSL development.

Read-Only Regions. All WGSL memory regions have an access mode, either read, read_write,
or write. During our calculation of Property 1, if we encountered a read-only region, we did not
convert it to atomic, because by definition reads cannot race with each other in the absence of a
write. However, in some cases it is possible that even if a region is marked as read_write, it is
only read to during execution of the shader. While not implemented, regions which are only read
from, even if marked read_write, do not need to be accessed atomically.

Limitation on Atomic Types. WGSL currently only allows two atomic types: unsigned and signed
32-bit values. This has implications for both the completeness and performance of our implementa-
tion of Property 1. For example, one element of a vec2 may be included in the index dependency
of an access, but since a vec2 cannot be made atomic, we cannot convert it and ensure it won’t
participate in a data race. Similarly, if a floating point value is part of the control dependency of an
access, the region the floating point is loaded from can’t be converted. Therefore, it is currently not
possible to implement Property 1 completely inWGSL. When our implementation encounters a data
type that cannot be accessed atomically in WGSL, it is flagged so that users of the compiler pass can
be made aware of the issue. For example, safety critical applications may decide to discard flagged
shaders and perform the computation on the CPU instead. In the future, WGSL could add support
for atomic floats and other data types, following the example set by C++, which implements an
atomic type template which can be applied as long as certain named requirements are satisfied [16].

The limitations on atomic types also impact the performance of shaders translated by our pass. In
WGSL, atomic types are not constructible, i.e., able to be loaded/stored directly, passed into functions,
or created outside of the declarations of buffer types. If a struct or sized array which contains a type
converted by our pass is loaded into a private variable, a function loads each field of the struct or
loops over the array and loads each element. It is not possible to directly load a runtime-sized array,
creating an upper bound on the number of accesses which must be made atomic. WGSL’s ability
to support atomic types is dependent on their implementation in native GPU languages. These
languages are slowly adding support for more atomic types, so future enhancements to WGSL can
increase the coverage of SMSG Property 1. For full completeness, however, it may be required to
limit the types which can contribute to memory accesses.
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Table 4. Impact of applying SMSG Property 1 to WebGPU benchmarks running on an Apple M3.

Benchmark Shaders Impacted Impacted Pass Timing Runtime
Shaders Accesses (ms) Overhead

WebLLM DeepSeek Qwen 7B [70] 73 4 24 62.47 0.0%
WebLLM Llama 3.2 1B [70] 63 1 24 53.78 0.0%
ONNX Runtime (Whisper) [88] 60 0 0 8.67 0.0%
ONNX Runtime (Phi-3) [91] 19 0 0 3.77 0.0%
MediaPipe Gemma2 2B [36] 72 0 0 5.17 0.0%
FFT Ocean Demo [4] 9 0 0 0.11 0.0%
Game Of Life [86] 1 0 0 0.08 0.0%
Compute Boids [86] 1 0 0 0.03 0.0%
Bitonic Sort [86] 3 1 10 0.34 9.8%
MSM [23] 4 3 7 23.43 3.0%

Targeting Different Backends. As described in Sec. 2.3, bothDirectX andVulkan provide guarantees
that operations on device memory will not execute out-of-bounds, while Metal does not. It may
seem then that we do not need to apply SMSG Property 1 to device memory accesses in DirectX
and Vulkan. However, these guarantees are more analogous to runtime protections in operating
systems, rather than features of the languages themselves. This is because data races in both HLSL
and SPIR-V programs are undefined, meaning that memory safety violations could potentially
occur in racy programs. In some sense, these could also be considered specification vulnerabilities
of DirectX and Vulkan, motivating future work on the development of these frameworks. For our
purposes, this means that we apply SMSG Property 1 to all memory operations on all backends.

6.1 Evaluation

While the goal of SMSG is to prevent malicious actors from exploiting memory safety violations in
WGSL programs, its guarantees apply to all WGSL programs. This means that even in programs
that are not malicious, the SMSG pass analyzes memory accesses and translates dependencies into
atomic operations. Therefore, we conducted a study to evaluate the cost of SMSG Property 1 in
terms of both compilation time and GPU performance.

6.1.1 Benchmarks. Our implementation of Property 1 in Tint allows us to build a custom version
of Chromium on an Apple M3 and run our analysis on a set of WebGPU applications, detailed in
Tab. 4. As WebGPU is still in active development and is not yet fully available on all web browsers,
this set of applications consists mostly of demonstrations. We believe these applications provide a
good benchmark of how WebGPU can be utilized by browser applications.
The first five benchmarks in Tab. 4 are AI applications. WebLLM DeepSeek Qwen 7B and

WebLLM Llama 3.2 1B utilize WebLLM [70] to run LLM inference. Under the hood, WebLLM
relies on Apache TVM [34], specifically TVM’s Web runtime, and supports many models. We chose
two models for our benchmark: the Llama-3.2-1B-Instruct generative model, and the DeepSeek-
R1-Distill-Qwen-7B reasoning model. ONNX Runtime (Phi-3) and ONNX Runtime (Whisper)
use ONNX Runtime Web [25] through transformers.js [41], which allows machine learning models
to be deployed and run in browsers using WebGPU. The Phi-3 benchmark runs inference using
the Phi-3-mini-4k-instruct model, while theWhisper benchmark runs speech recognition with
OpenAI’s Whisper Large V3 Turbo. Finally, MediaPipe Gemma2 2B uses Google’s MediaPipe
suite to run LLM inference with the Gemma2 2B model.

The other benchmarks consist of demonstrations of WebGPU’s compute abilities. Three, Bitonic
Sort, Game of Life, and Compute Boids, are part of the WebGPU Samples maintained by the
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official WebGPU working group [86], FFT Ocean Demo shows how to use compute shaders
to render complex ocean waves as part of the Babylon.js library for 3D web graphics [4], and
MSM is a WebGPU implementation of multi-scalar multiplication submitted to the 2023 ZPrize
competition [95]. This last benchmark relies on sparse-matrix multiplication techniques, an area
where complex index dependencies may be more common than in dense computations.

6.1.2 Compilation Cost. Unlike a language like CUDAwhich is often precompiled to GPU assembly
code, WGSL shaders are translated to native GPU languages and vendor-specific machine code
at runtime. To mitigate the cost of runtime compilation, WebGPU implementations and native
GPU frameworks utilize layered and non-standardized compilation processes, often involving
asynchronous operations, just-in-time (JIT) compilation, and caching components. This complex
structure makes it difficult to measure the timing of the full compilation pipeline. Therefore, in
Tab. 4, rather than reporting the time taken by our pass as a percentage overhead of the full
compilation process, we instead simply report the raw time (in the Pass Timing column) it takes
to run our pass on the shaders in each benchmark.
Compared against only the time taken to run the existing passes in the tint compiler, the

addition of our pass adds a large overhead (up to 9x for the slowest-compiling shader in the MSM
benchmark). However, these pre-existing passes are generally much simpler, e.g., doing a sequential
scan of a shader and adding bounds-checks to memory accesses, while our pass requires relatively
complex dependency analysis and program traversal. The timing of passes in the tint compiler
also does not include the time it takes to parse WGSL programs into an IR and write them out
to native GPU programs, nor the time taken by native language compilers to generate machine
code, meaning that the time taken to run all passes is a small part of the overall compilation and
runtime process. For example, on theWebLLM DeepSeek Qwen 7B benchmark, the one-time
cost of our pass summed across all shaders was only 62.47 ms, while each shader ran dozens to
hundreds of times for a total of several seconds during a single inference response, with typical
LLM interactions usually consisting of many inferences.

6.1.3 GPU Performance Cost. Atomic operations constrain compiler optimizations, and thus, can
negatively impact performance [10, 74]. Therefore, it is likely that any atomic operations added to
satisfy SMSG Property 1 could lead to reduced application performance. However, as shown in
Tab. 4 in the Runtime Overhead column, on the majority of the benchmarks we tested SMSG
Property 1 did not apply to any shaders. We now discuss the four benchmarks where it did apply.
While the two WebLLM model benchmarks differed in the number of shaders used by the

program, they both compile a shader called apply_penalty_inplace_kernel which requires
making four memory regions atomic, affecting 24 accesses in the program. However, we have
received confirmation from the developers of WebLLM that these shaders are not yet used during
LLM inference. Additionally, the accesses that must be made atomic in this shader are floating
point accesses, and as mentioned in Sec. 6 WGSL does not yet allow atomic access to floating point
data types. Therefore, if WebLLM starts using this shader, we can no longer guarantee memory
safety in this application, at least until WGSL begins to support atomic accesses to more data types.

The Bitonic Sort benchmark does require making one workgroup buffer memory region atomic,
affecting 10 accesses in one shader. To complete one full sort, using default parameters, this shader
runs 91 times. In order to get precise GPU timing information, we extended Dawn’s WebGPU
implementation to automatically record GPU timestamps for every compute shader. We ran the full
sort three times each with our pass enabled and disabled on an Apple M3 GPU, and calculated the
average time across the 91 runs of the shader. On average, each shader run took between .04-.09
ms, for a total of 3.6-8.2 ms. With our pass enabled, average runtime of the shaders increased by
9.8%, from .064 ms per shader to .071 ms. We performed the same analysis on theMSM benchmark;
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applying SMSG Property 1 to these shaders required making 7 accesses atomic. The average shader
runtime of this benchmark increased from .99 seconds to 1.02 seconds, or 3%.

To conclude, these results show that only ~2% of the shaders in our benchmarks are affected by
SMSG Property 1. The benchmarks consist of important WebGPU applications in several domains,
including LLM inference and general compute algorithms, and are either generated by state-of-the-
art tensor compilers, e.g., TVM [34], or handwritten by expert GPU developers. Despite this, many
of the shaders used by these applications do not include the complex indirect memory accesses
that require applying transformations to satisfy SMSG Property 1, validating the efficacy of SMSG.
For example, matrix multiplication is generally written using simple index calculations taken
from combinations of thread identifiers and constants, and none of the matrix multiplications
in our LLM benchmarks require any transformation. On the other hand, it is possible that some
applications, e.g., bitonic sort, will experience reduced performance due to the safety requirements
of SMSG Property 1. We also show that in this set of benchmarks, data types which cannot be
accessed atomically in WGSL are generally not used in index dependence calculations, with the
only exception being the WebLLM shader which may be utilized in the future. All browser-based
languages must make tradeoffs between performance and safety, and we believe our results provide
evidence that the performance overhead of adopting SMSG Property 1 is within acceptable limits.

7 Testing SMSG Property 2

While SMSG Property 1 can be implemented by WGSL compilers, Property 2 must be adopted by
the languages WGSL targets. This may seem like a thorny problem; many languages, including C++
and GPU languages, leave the behavior of data races undefined to avoid having to reason about
constraints like the one required by Property 2. However, previous work on data races has shown
how to bound the behavior of data races to provide a local data-race-free (Local DRF) property and
proven the soundness of many existing compiler optimizations given this property [26].

The Local DRF property is stronger than SMSG Property 2. It prevents a data race on one memory
location 𝑥 causing an unrelated memory location 𝑦 to read a value written to 𝑥 , what has been
called bounding data races in space. It also prevents the effects of data races from leaking across
synchronization points, e.g., barriers, called bounding data races in time. In particular, bounding data
races in time requires preserving load-store ordering, which has been shown to have relatively low
cost on CPUs. However, the cost of load-store reordering has not been studied on GPUs, where it is
very commonly observed [49]. Still, prior work showed that preserving load-store ordering is not
necessary to bound data races in space, while proving that many existing compiler transformations
are compatible with this property [26], and therefore, SMSG Property 2.
To test whether SMSG Property 2 is maintained by current GPU compilers, we augmented the

WGSLMemSmith fuzzer using metamorphic fuzzing. When generating shaders, variables and
memory locations are split into safe and unsafe sets. Safe memory locations are read-only or written
to by only one thread, while unsafe memory locations may be read or written to by any thread. Safe
local variables are only used in combination with safe memory locations, while unsafe variables
can be combined in expressions with unsafe memory locations. Intuitively, this process creates
race-free slices of programs, as well as slices that may contain races. During fuzzing, we run two
shaders, one with only race-free slices and the other with both race-free and racy slices.
The race-free shader is run first and the values in memory at the end of execution are saved.

Since this shader contains no data races or sharing of memory between threads, the results are
deterministic. The racy shader, which contains the exact statements in the safe shader along with
statements that operate on unsafe memory locations and may contain data races, is run next. Then,
the values in safe memory locations at the end of the racy shader execution are compared with the
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values from the race-free shader execution—if the racy shader results differ, the addition of data
races may have caused the differences, violating SMSG Property 2.

7.1 Evaluation

As we use the same shaders for both the metamorphic fuzzing and testing for SMSG Property 1, our
evaluation consists of the same set of compilation stacks and testing time shown in Fig. 3. On most
compilation stacks we tested, we found that data races did not effect race-free slices of programs.
This was true for all compilation stacks using Vulkan and DirectX as the WebGPU backend, as
well as Metal backends targeting Apple M-series GPUs. On DirectX backends, data races caused
unexpected values in unsafe memory locations, i.e., values that could not be explained by any
writes to those memory locations, but this behavior did not affect race-free slices of the programs.

On one machine, an older MacBook with an Intel SoC, running the racy shader caused memory
in race-free slices of the shader to change. We built a browser-based reducer using fuzzing reduction
techniques [69, 94] and determined that the mismatch between shader outputs in the shaders which
we reduced were due to an unrelated issue that manifests in the presence of certain specific loop
constructs and occurs when running a single-threaded shader containing no data races on the GPU.
We believe this issue is a compiler/driver bug and have reported our findings to Apple.

Our observations show that SMSG Property 2 empirically holds in everyWebGPU implementation
we have tested except on one (likely buggy) machine, which should ease its adoption by GPU
languages. Besides memory safety, SMSG Property 2 also allows more compositional reasoning
about program behaviors, opening up the door to other future optimizations and safety properties.

8 Applications Beyond WebGPU

The proposals in this paper are designed to address WGSL’s specification vulnerability, but our
results can also inform the general development of safe languages which target parallel processors
and seek to provide memory safety and reasonable semantics for data races. Our work has potential
lessons and impacts for three different areas: existing browser-based languages, existing native
languages, and future development of languages that require compositional safety reasoning.

8.1 Browser-Based Languages

The other two main languages used in the browser, JavaScript and Wasm, both require bounds-
checks for memory safety and constrain the effects of data races, including specifying that data
races must be bound in space. Unlike WGSL, the semantics of these languages can also be fully
controlled by an implementation. For example, the V8 JavaScript and Wasm engine controls the
optimization phases of compilation and directly generates machine code, avoiding intermediate
languages with undefined behavior. In some cases, these engines implement bounds-checks by
relying on operating systems/processors to fault when memory is accessed out-of-bounds [85],
which as we show cannot be guaranteed by GPU runtimes.

Even so, the problems associated with optimizations on bounds-checks and data races must be
considered by these languages. JavaScript and Wasm engines may target architectures without
built-in memory protections, so must not implement optimizations which both remove bounds-
checks and rematerialize loads. Additionally, as described in Sec. 4.2, dead code may execute due to
data races in control dependencies, so optimizations on those blocks must be carefully checked.

8.2 Native Languages

Some native languages, such as Java and Go, give weak semantics to data races and control their
compilation stacks, similar to the browser-based languages. Rust takes a different approach, using
its ownership system to avoid races and memory safety violations in Safe Rust. However, Unsafe
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Rust, along with other unsafe languages like C++, do not provide the same guarantees. A large body
of research exists to retrofit unsafe languages with memory protections, including runtime analyses
like Address Sanitizer [75] and pointer augmentation like Checked C [71]. However, undefined
behavior, e.g., due to data races, makes it difficult to reason about these protections’ soundness.

In contrast, if a native language were to adopt SMSG Property 2 and apply SMSG Property 1 to
indirect accesses via its compiler, it would be able to provide more robust memory safety guarantees.
In general, SMSG would be difficult to apply to large, feature-rich C++ codebases spanning many
files and utilizing complex language features, as the Property 1 compiler pass needs access to
the full program slice to compute the full access dependency graph and cannot easily handle
features like pointer aliasing, dynamic allocations, and linkage types. However, in safety-critical
settings, e.g., automotive, there is already precedent, e.g., MISRA-C++ [61], for restricted subsets of
languages where Property 1 could more easily apply. For example, a C++ dialect where all pointers
are restricted to not alias, memory locations are not accessed both atomically and non-atomically,
and mixed-size accesses are restricted would correspond almost exactly to WGSL, in which case
SMSG could apply directly. We believe this is a promising avenue of future research, with the tools
and proposals in this paper providing a framework for formally defining such a language dialect.

8.3 Compositional Language Design

WGSL is somewhat unique in that it both needs to enforce memory safety and relies on interme-
diate languages which are inherently weaker with regards to these protections, motivating the
development of SMSG. However, we argue that going forward, this type of compositional language
design will become more prevalent. The post-Dennard Scaling landscape has led to the development
of numerous types of architectures and associated software stacks, while frameworks like LLVM
and MLIR are paving the way for increasingly connected pathways from one language to another.
As shown in this paper, understanding the interactions between languages and their safety

guarantees is complex. Our approach blends a mix of more formal language proposals and extensive
empirical evaluation. We hope our results motivate future research that seeks to clearly specify
behaviors that have classically been left undefined, such as data races, making it easier to compose
language semantics and enable performant and safe applications.

9 Related Work

Detecting and Reasoning About Data Races. Prior work on data races has tried to classify races as
either “benign” or “destructive” [31, 63], or argued that there are no benign races [9] and shown
how races can break basic assumptions of program behavior [26]. There is a large line of research
on detecting and avoiding races, both statically [7, 29, 66] and dynamically [30, 73, 76].

Researchers have also developed tools to statically analyze GPU programs for data races [6, 13,
52], but these tools are not complete and may report false positives, which hamper adoption by
industry [43, 62, 72]. More recently, a sound and partially-complete static data race checker for
GPUs has been developed [53], and a GPU programming language which prohibits data races and
out-of-bounds accesses by construction has been proposed [45]. Dynamic data race detection on
the GPU has also shown promise, finding new data races without false positives [44]. In this work,
we do not attempt to detect or remove data races; instead, we focus on providing guarantees that
data races will not compromise the security of a programming language. In fact, SMSG Property 1
compiler passes could be further optimized using static data race detection techniques, as shaders
statically determined to be data-race-free do not need any transformations to maintain memory
safety.
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Memory Isolation. Memory isolation on GPUs has been extensively studied—CUDA was shown
to leak global and register data [65], leftover global memory from NVIDIA and AMD GPUs could
be used to infer webpages visited by a user [48], leftover shared and register memory could be
used to reconstruct inference output of neural networks [68, 79], and out-of-bounds accesses on
NVIDIA GPUs could be used to overwrite threads’ local memory and degrade output of neural
networks [40]. All this prior work also has focused on reverse engineering low level details of GPU
assembly, handwriting shaders to exhibit issues, or combinations of both to reveal specific, one-off
vulnerabilities. In contrast, we present a set of properties that guarantee memory isolation in a
high level language, WGSL, by preserving memory safety through the compilation stack.

Compiler Testing. Compiler fuzzing has been widely studied, e.g., finding bugs in C compilers [93]
and GPU compilers for languages like OpenGL [27], SPIR-V [28], and even WGSL [47]. These
approaches are either based on differential testing [57], comparing outputs of multiple compilers,
or metamorphic testing [12], where programs are changed in ways that should not affect their
semantics and results are compared. Another feature of these approaches is that they explicitly seek
to avoid undefined behavior, constructing programs that are guaranteed to not contain undefined
behaviors or adding transformations that remove undefined behaviors at the source level. Unlike
other approaches, we explicitly include constrained sources of undefined behavior, e.g., data races,
out-of-bounds accesses, and undefined arithmetic, to test the security properties of compilers.

10 Conclusion

In this paper, we showed that WebGPU currently contains a specification vulnerability where valid
compiler transformations could introduce memory safety violations due to data races. We show
through our bottom-up threat assessment that such violations could readily be turned into memory
isolation vulnerabilities. To address this, we provide the SafeRace Memory Safety Guarantee
(SMSG), a set of specification proposals that preserves memory safety in the presence of data races.
We show that this can be done with relatively little overhead or changes to current frameworks,
enabling browsers to more safely take advantage of GPU acceleration and providing a framework
for future development of safe languages.
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Acknowledgments

We thank all the reviewers of this paper for their detailed and helpful feedback; this work is more
rigorous and precise because of them. We would like to thank Trail of Bits for helping with our
vulnerability disclosures, as well as the product security teams at Apple and especially AMD for
promptly responding and working with us to address the issues we found. We also appreciate
the quick responses and fixes by the Firefox and wgpu developers after we reported the bounds-
checking issue to them. We thank the members of the W3C WebGPU working group and the
Khronos Memory Model Task sub-group for allowing us to present our work to them and for
providing valuable feedback. We also specifically thank Faith Ekstrand, who provided information
on using the Vulkan pipeline executable properties extension, and Natalie Vock, who helped
diagnose and fix the AMD security issue. This work was supported by a gift from Google and an
NDSEG fellowship. This material is based upon work supported by the National Science Foundation
under Award No. 2239400. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the funding
agencies.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 297. Publication date: October 2025.



297:26 Reese Levine, Ashley Lee, Neha Abbas, Kyle Little, and Tyler Sorensen

References

[1] 2024. Dawn: A WebGPU implementation. https://dawn.googlesource.com/dawn.
[2] R. Abbott, J. Chin, Jed Donnelley, W. Konigsford, S. Tokubo, and D. Webb. 1976. Security analysis and enhancements

of computer operating systems. (1976). https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir76-1041.pdf
[3] Apple Inc. 2025. Metal. https://developer.apple.com/documentation/metal/.
[4] Babylon.js Team. 2025. Babylon.js FFT ocean demo. https://playground.babylonjs.com/?webgpu#YX6IB8#758
[5] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In

Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. https:
//doi.org/10.1145/1926385.1926394

[6] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: a verifier for GPU
kernels. In Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and

Applications. https://doi.org/10.1145/2384616.2384625
[7] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018. RacerD: compositional static race

detection. Proc. ACM Program. Lang. (2018). https://doi.org/10.1145/3276514
[8] Google Security Blog. 2019. Queue hardening enhancements. https://security.googleblog.com/2019/05/queue-

hardening-enhancements.html.
[9] Hans-J. Boehm. 2011. How to miscompile programs with "benign" data races. In 3rd USENIX Workshop on Hot Topics in

Parallelism. https://dl.acm.org/doi/10.5555/2001252.2001255
[10] Brandon Alexander Burtchell and Martin Burtscher. 2024. Characterizing CUDA and OpenMP synchronization

primitives. In 2024 IEEE International Symposium on Workload Characterization. https://userweb.cs.txstate.edu/
~burtscher/papers/iiswc24b.pdf

[11] Microsoft Security Response Center. 2019. We need a safer systems programming language. https://msrc.microsoft.
com/blog/2019/07/we-need-a-safer-systems-programming-language/.

[12] Tsong Yueh Chen, Shing-Chi Cheung, and Siu-Ming Yiu. 1998. Metamorphic testing: a new approach for generating
next test cases. (1998). https://doi.org/10.48550/arXiv.2002.12543

[13] Tiago Cogumbreiro, Julien Lange, Dennis Liew Zhen Rong, and Hannah Zicarelli. 2021. Checking data-race freedom of
GPU kernels, compositionally. InComputer Aided Verification: 33rd International Conference. https://doi.org/10.1007/978-
3-030-81685-8_19

[14] NVIDIA Corporation. 2024. CUDA Ada GPU architecture tuning guide. NVIDIA Corporation. https://docs.nvidia.com/
cuda/ada-tuning-guide/index.html.

[15] cppreference.com. 2024. Multithreading - C++ Language Documentation. https://en.cppreference.com/w/cpp/
language/multithread

[16] cppreference.com. 2025. std::atomic - C++ Reference. https://en.cppreference.com/w/cpp/atomic/atomic
[17] NIST National Vulnerability Database. 2002. CVE-2002-0649. https://nvd.nist.gov/vuln/detail/CVE-2002-0649.
[18] NIST National Vulnerability Database. 2014. CVE-2014-0160 (Heartbleed). https://nvd.nist.gov/vuln/detail/cve-2014-

0160.
[19] NIST National Vulnerability Database. 2016. CVE-2016-4655. https://nvd.nist.gov/vuln/detail/CVE-2016-4655.
[20] NIST National Vulnerability Database. 2022. CVE-2022-32947. https://nvd.nist.gov/vuln/detail/CVE-2022-32947.
[21] NIST National Vulnerability Database. 2025. CVE-2024-36353 (AMD Leftover Global Memory). https://nvd.nist.gov/

vuln/detail/CVE-2024-36353.
[22] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1978. Hints on test data selection: help for the practicing programmer.

Computer (1978). https://doi.org/10.1109/C-M.1978.218136
[23] Tal Derei and Koh Wei Jie. 2023. webgpu-msm-bls12-377: WebGPU MSM implementation for BLS12-377 curve (ZPrize

2023). https://github.com/td-kwj-zp2023/webgpu-msm-bls12-377.
[24] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. LLM.int8(): 8-bit matrix multiplication for

transformers at scale. In Proceedings of the 36th International Conference on Neural Information Processing Systems.
https://doi.org/10.48550/arXiv.2208.07339

[25] ONNX Runtime developers. 2025. Using WebGPU with ONNX Runtime. https://onnxruntime.ai/docs/tutorials/web/ep-
webgpu.html.

[26] Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding data races in space and time. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. https:
//doi.org/10.1145/3192366.3192421

[27] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017. Automated testing of graphics shader
compilers. Proc. ACM Program. Lang. (2017). https://doi.org/10.1145/3133917

[28] Alastair F. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez Maselco, and Antoni Karpiński.
2021. Test-case reduction and deduplication almost for free with transformation-based compiler testing. In Proceedings

of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. https:

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 297. Publication date: October 2025.

https://dawn.googlesource.com/dawn
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir76-1041.pdf
https://developer.apple.com/documentation/metal/
https://playground.babylonjs.com/?webgpu#YX6IB8#758
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/3276514
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://dl.acm.org/doi/10.5555/2001252.2001255
https://userweb.cs.txstate.edu/~burtscher/papers/iiswc24b.pdf
https://userweb.cs.txstate.edu/~burtscher/papers/iiswc24b.pdf
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://doi.org/10.48550/arXiv.2002.12543
https://doi.org/10.1007/978-3-030-81685-8_19
https://doi.org/10.1007/978-3-030-81685-8_19
https://docs.nvidia.com/cuda/ada-tuning-guide/index.html
https://docs.nvidia.com/cuda/ada-tuning-guide/index.html
https://en.cppreference.com/w/cpp/language/multithread
https://en.cppreference.com/w/cpp/language/multithread
https://en.cppreference.com/w/cpp/atomic/atomic
https://nvd.nist.gov/vuln/detail/CVE-2002-0649
https://nvd.nist.gov/vuln/detail/cve-2014-0160
https://nvd.nist.gov/vuln/detail/cve-2014-0160
https://nvd.nist.gov/vuln/detail/CVE-2016-4655
https://nvd.nist.gov/vuln/detail/CVE-2022-32947
https://nvd.nist.gov/vuln/detail/CVE-2024-36353
https://nvd.nist.gov/vuln/detail/CVE-2024-36353
https://doi.org/10.1109/C-M.1978.218136
https://github.com/td-kwj-zp2023/webgpu-msm-bls12-377
https://doi.org/10.48550/arXiv.2208.07339
https://onnxruntime.ai/docs/tutorials/web/ep-webgpu.html
https://onnxruntime.ai/docs/tutorials/web/ep-webgpu.html
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3453483.3454092
https://doi.org/10.1145/3453483.3454092


SafeRace: Assessing and Addressing WebGPU Memory Safety in the Presence of Data Races 297:27

//doi.org/10.1145/3453483.3454092
[29] Cormac Flanagan and Stephen N. Freund. 2001. Detecting race conditions in large programs. In Proceedings of the 2001

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering. https://doi.org/10.1145/
379605.379687

[30] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient and precise dynamic race detection. In Proceedings

of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation. https://doi.org/10.1145/
1542476.1542490

[31] Cormac Flanagan and Stephen N. Freund. 2010. Adversarial memory for detecting destructive races. In Proceedings of

the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation. https://doi.org/10.1145/
1806596.1806625

[32] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter
Sewell. 2016. Modelling the ARMv8 architecture, operationally: concurrency and ISA. In Proceedings of the 43rd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. https://doi.org/10.1145/2837614.2837615
[33] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget, Kathryn E. Gray, Ali Sezgin, Mark

Batty, and Peter Sewell. 2017. Mixed-size concurrency: ARM, POWER, C/C++11, and SC. In Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages. https://doi.org/10.1145/3009837.3009839
[34] Apache Software Foundation. [n. d.]. Apache TVM: Open Deep Learning Compiler Stack. https://github.com/apache/

tvm.
[35] gfx-rs Developers. 2025. wgpu Issue #4972: support for buffer mapping in chrome WebGPU. https://github.com/gfx-

rs/wgpu/issues/4972 Accessed: 2025-03-12.
[36] Google MediaPipe Studio. 2025. MediaPipe Studio: LLM inference demo. https://mediapipe-studio.webapps.google.

com/studio/demo/llm_inference
[37] Khronos Group. [n. d.]. Vulkan 1.3 Specification. https://registry.khronos.org/vulkan/specs/1.3-extensions/html/

vkspec.html.
[38] Khronos Group. 2024. SPIR-V Unified Specification. https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#

_memory_instructions. Accessed: 2024-10-07.
[39] Khronos Group. 2024. Vulkan Guide - Robustness. https://docs.vulkan.org/guide/latest/robustness.html
[40] Yanan Guo, Zhenkai Zhang, and Jun Yang. 2024. GPU memory exploitation for fun and profit. In 33rd USENIX Security

Symposium (USENIX Security 24). https://www.usenix.org/system/files/usenixsecurity24-guo-yanan.pdf
[41] Hugging Face. 2025. Transformers.js documentation. https://huggingface.co/docs/transformers.js/en/index
[42] Apple Inc. [n. d.]. Metal shading language specification. https://developer.apple.com/metal/Metal-Shading-Language-

Specification.pdf.
[43] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why don’t software developers

use static analysis tools to find bugs?. In 2013 35th International Conference on Software Engineering. https://doi.org/10.
1109/ICSE.2013.6606613

[44] Aditya K. Kamath and Arkaprava Basu. 2021. iGUARD: In-GPU Advanced Race Detection. In Proceedings of the ACM

SIGOPS 28th Symposium on Operating Systems Principles. Association for Computing Machinery. https://doi.org/10.
1145/3477132.3483545

[45] Bastian Köpcke, Sergei Gorlatch, and Michel Steuwer. 2024. Descend: a safe GPU systems programming language.
Proc. ACM Program. Lang. (2024). https://doi.org/10.1145/3656411

[46] Chris Lattner. 2012. LLVM memory use markers. https://www.nondot.org/sabre/LLVMNotes/MemoryUseMarkers.txt
[47] Bastien Lecoeur, Hasan Mohsin, and Alastair F. Donaldson. 2023. Program reconditioning: avoiding undefined

behaviour when finding and reducing compiler bugs. Proc. ACM Program. Lang. (2023). https://doi.org/10.1145/3591294
[48] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. 2014. Stealing webpages rendered on your browser by

exploiting GPU vulnerabilities. In 2014 IEEE Symposium on Security and Privacy. https://doi.org/10.1109/SP.2014.9
[49] Reese Levine, Mingun Cho, Devon McKee, Andrew Quinn, and Tyler Sorensen. 2023. GPUHarbor: testing GPU memory

consistency at large (experience paper). In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software

Testing and Analysis. https://doi.org/10.1145/3597926.3598095
[50] Reese Levine, Tianhao Guo, Mingun Cho, Alan Baker, Raph Levien, David Neto, Andrew Quinn, and Tyler Sorensen.

2023. MC Mutants: evaluating and improving testing for memory consistency specifications. In Proceedings of

the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems.
https://doi.org/10.1145/3575693.3575750

[51] Reese Levine, Ashley Lee, Neha Abbas, Kyle Little, and Tyler Sorensen. 2025. Artifact for SafeRace: assessing and
addressing WebGPU memory safety in the presence of data races. https://doi.org/10.5281/zenodo.16915241

[52] Guodong Li and Ganesh Gopalakrishnan. 2010. Scalable SMT-based verification of GPU kernel functions. In Proceedings

of the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering. https://doi.org/10.
1145/1882291.1882320

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 297. Publication date: October 2025.

https://doi.org/10.1145/3453483.3454092
https://doi.org/10.1145/3453483.3454092
https://doi.org/10.1145/379605.379687
https://doi.org/10.1145/379605.379687
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1806596.1806625
https://doi.org/10.1145/1806596.1806625
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/3009837.3009839
https://github.com/apache/tvm
https://github.com/apache/tvm
https://github.com/gfx-rs/wgpu/issues/4972
https://github.com/gfx-rs/wgpu/issues/4972
https://mediapipe-studio.webapps.google.com/studio/demo/llm_inference
https://mediapipe-studio.webapps.google.com/studio/demo/llm_inference
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_memory_instructions
https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_memory_instructions
https://docs.vulkan.org/guide/latest/robustness.html
https://www.usenix.org/system/files/usenixsecurity24-guo-yanan.pdf
https://huggingface.co/docs/transformers.js/en/index
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/3477132.3483545
https://doi.org/10.1145/3477132.3483545
https://doi.org/10.1145/3656411
https://www.nondot.org/sabre/LLVMNotes/MemoryUseMarkers.txt
https://doi.org/10.1145/3591294
https://doi.org/10.1109/SP.2014.9
https://doi.org/10.1145/3597926.3598095
https://doi.org/10.1145/3575693.3575750
https://doi.org/10.5281/zenodo.16915241
https://doi.org/10.1145/1882291.1882320
https://doi.org/10.1145/1882291.1882320


297:28 Reese Levine, Ashley Lee, Neha Abbas, Kyle Little, and Tyler Sorensen

[53] Dennis Liew, Tiago Cogumbreiro, and Julien Lange. 2024. Sound and partially-complete static analysis of data-races in
GPU programs. Proc. ACM Program. Lang. (2024). https://doi.org/10.1145/3689797

[54] LLVM Project. 2025. LLVM Language Reference Manual. https://llvm.org/docs/LangRef.html.
[55] Rust Graphics Mages. [n. d.]. wgpu. https://github.com/gfx-rs/wgpu.
[56] Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java memory model. In Proceedings of the 32nd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. https://doi.org/10.1145/1040305.1040336
[57] William M. McKeeman. 1998. Differential testing for software. Digit. Tech. J. (1998). https://api.semanticscholar.org/

CorpusID:14018070
[58] Microsoft. 2024. Direct3D 11 Advanced Stages - Compute Shader Access. https://learn.microsoft.com/en-us/windows/

win32/direct3d11/direct3d-11-advanced-stages-cs-access
[59] Microsoft. 2024. ld_raw (sm5 - asm). https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/ld-raw--sm5---

asm-.
[60] Microsoft. 2025. DirectX specifications. https://microsoft.github.io/DirectX-Specs/.
[61] MISRA Consortium. 2023. MISRA C++: guidelines for the use of C++ in critical systems. https://www.misra.org.uk/

misra-c-plus-plus/. Originally published June 5, 2008; latest edition released October 2023. Accessed 2025-07-24.
[62] Marcus Nachtigall, Lisa Nguyen Quang Do, and Eric Bodden. 2019. Explaining Static Analysis - A Perspective. In 2019

34th IEEE/ACM International Conference on Automated Software Engineering Workshop. https://doi.org/10.1109/ASEW.
2019.00023

[63] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad Calder. 2007. Automatically
classifying benign and harmful data races using replay analysis. In Proceedings of the 28th ACM SIGPLAN Conference

on Programming Language Design and Implementation. https://doi.org/10.1145/1250734.1250738
[64] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 memory model: x86-TSO. In Proceedings of the 22nd

International Conference on Theorem Proving in Higher Order Logics. https://doi.org/10.1007/978-3-642-03359-9_27
[65] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. 2016. CUDA leaks: a detailed hack for CUDA and a (partial)

fix. ACM Trans. Embed. Comput. Syst. (2016). https://doi.org/10.1145/2801153
[66] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2011. LOCKSMITH: Practical static race detection for C. ACM

Trans. Program. Lang. Syst. (2011). https://doi.org/10.1145/1889997.1890000
[67] Chromium Project. 2023. WebGPU technical report. https://chromium.googlesource.com/chromium/src/+/main/docs/

security/research/graphics/webgpu_technical_report.md.
[68] Frederik Dermot Pustelnik, Xhani Marvin Saß, and Jean-Pierre Seifert. 2024. Whispering pixels: exploiting uninitialized

register accesses in modern GPUs. (2024). https://doi.org/10.48550/arXiv.2401.08881
[69] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-case reduction

for C compiler bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and

Implementation. https://doi.org/10.1145/2254064.2254104
[70] Charlie F. Ruan, Yucheng Qin, Xun Zhou, Ruihang Lai, Hongyi Jin, Yixin Dong, Bohan Hou, Meng-Shiun Yu, Yiyan

Zhai, Sudeep Agarwal, Hangrui Cao, Siyuan Feng, and Tianqi Chen. 2024. WebLLM: a high-performance in-browser
LLM inference engine. arXiv:2412.15803 [cs.LG] https://arxiv.org/abs/2412.15803

[71] Andrew Ruef, Leonidas Lampropoulos, Ian Sweet, David Tarditi, and Michael Hicks. 2019. Achieving Safety Incremen-
tally with Checked C. In Principles of security and trust. https://doi.org/10.1007/978-3-030-17138-4_4

[72] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from building
static analysis tools at Google. Commun. ACM (2018). https://doi.org/10.1145/3188720

[73] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser: a dynamic data
race detector for multithreaded programs. ACM Trans. Comput. Syst. (1997). https://doi.org/10.1145/265924.265927

[74] Hermann Schweizer, Maciej Besta, and Torsten Hoefler. 2015. Evaluating the cost of atomic operations on modern
architectures. In 2015 International Conference on Parallel Architecture and Compilation. https://doi.org/10.1109/PACT.
2015.24

[75] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. 2012. AddressSanitizer: a fast
address sanity checker. In USENIX ATC 2012. https://www.usenix.org/conference/usenixfederatedconferencesweek/
addresssanitizer-fast-address-sanity-checker

[76] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race detection in practice. In Proceedings

of the Workshop on Binary Instrumentation and Applications. https://doi.org/10.1145/1791194.1791203
[77] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark

Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang. 2023. FlexGen: high-throughput
generative inference of large language models with a single GPU. (2023). https://doi.org/10.48550/arXiv.2303.06865

[78] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2017. Chasing away RAts: semantics and evaluation for
relaxed atomics on heterogeneous systems. In Proceedings of the 44th Annual International Symposium on Computer

Architecture. https://doi.org/10.1145/3079856.3080206

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 297. Publication date: October 2025.

https://doi.org/10.1145/3689797
https://llvm.org/docs/LangRef.html
https://github.com/gfx-rs/wgpu
https://doi.org/10.1145/1040305.1040336
https://api.semanticscholar.org/CorpusID:14018070
https://api.semanticscholar.org/CorpusID:14018070
https://learn.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-cs-access
https://learn.microsoft.com/en-us/windows/win32/direct3d11/direct3d-11-advanced-stages-cs-access
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/ld-raw--sm5---asm-
https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/ld-raw--sm5---asm-
https://microsoft.github.io/DirectX-Specs/
https://www.misra.org.uk/misra-c-plus-plus/
https://www.misra.org.uk/misra-c-plus-plus/
https://doi.org/10.1109/ASEW.2019.00023
https://doi.org/10.1109/ASEW.2019.00023
https://doi.org/10.1145/1250734.1250738
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/2801153
https://doi.org/10.1145/1889997.1890000
https://chromium.googlesource.com/chromium/src/+/main/docs/security/research/graphics/webgpu_technical_report.md
https://chromium.googlesource.com/chromium/src/+/main/docs/security/research/graphics/webgpu_technical_report.md
https://doi.org/10.48550/arXiv.2401.08881
https://doi.org/10.1145/2254064.2254104
https://arxiv.org/abs/2412.15803
https://arxiv.org/abs/2412.15803
https://doi.org/10.1007/978-3-030-17138-4_4
https://doi.org/10.1145/3188720
https://doi.org/10.1145/265924.265927
https://doi.org/10.1109/PACT.2015.24
https://doi.org/10.1109/PACT.2015.24
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.48550/arXiv.2303.06865
https://doi.org/10.1145/3079856.3080206


SafeRace: Assessing and Addressing WebGPU Memory Safety in the Presence of Data Races 297:29

[79] Tyler Sorensen and Heidy Khlaaf. 2024. LeftoverLocals: listening to LLM responses through leaked GPU local memory.
(2024). https://doi.org/10.48550/arXiv.2401.16603

[80] Tyler Sorensen, Lucas F. Salvador, Harmit Raval, Hugues Evrard, John Wickerson, Margaret Martonosi, and Alastair F.
Donaldson. 2021. Specifying and testing GPU workgroup progress models. Proc. ACM Program. Lang. OOPSLA (2021).
https://doi.org/10.1145/3485508

[81] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015.
Common compiler optimisations are invalid in the C11 memory model and what we can do about it. In Proceedings of

the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. https://doi.org/10.1145/
2676726.2676995

[82] W3C. [n. d.]. WebGPU. https://www.w3.org/TR/webgpu/.
[83] W3C. 2024. WebGPU Shading Language (WGSL). https://www.w3.org/TR/WGSL/. Accessed: 2024-10-08.
[84] Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen Dolan, Shaked Flur, Jean Pichon-

Pharabod, and Shu-yu Guo. 2020. Repairing and mechanising the JavaScript relaxed memory model. In Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. https://doi.org/10.1145/
3385412.3385973

[85] Conrad Watt, Andreas Rossberg, and Jean Pichon-Pharabod. 2019. Weakening WebAssembly. Proc. ACM Program.

Lang. (2019). https://doi.org/10.1145/3360559
[86] WebGPU Samples. 2025. WebGPU Samples. https://webgpu.github.io/webgpu-samples/
[87] WebKit Contributors. 2025. WebGPU Source in WebKit. https://github.com/WebKit/WebKit/tree/main/Source/

WebGPU.
[88] webml-community. 2025. Whisper Large V3 Turbo WebGPU. https://huggingface.co/spaces/webml-community/

whisper-large-v3-turbo-webgpu
[89] Mark Weiser. 1984. Program slicing. IEEE Transactions on Software Engineering (1984). https://doi.org/10.1109/TSE.

1984.5010248
[90] wgpu contributors. 2024. Add support for restricting indexing to avoid OOB accesses. https://github.com/gfx-

rs/wgpu/pull/6431
[91] Xenova. 2025. Experimental Phi-3 WebGPU. https://huggingface.co/spaces/Xenova/experimental-phi3-webgpu
[92] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. 2023. SmoothQuant: accurate and

efficient post-training quantization for large language models. In Proceedings of the 40th International Conference on

Machine Learning. https://doi.org/10.48550/arXiv.2211.10438
[93] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation. https:
//doi.org/10.1145/1993498.1993532

[94] A. Zeller and R. Hildebrandt. 2002. Simplifying and isolating failure-inducing input. IEEE Transactions on Software

Engineering (2002). https://doi.org/10.1109/32.988498
[95] ZPrize Initiative. 2025. ZPrize: accelerating the future of zero-knowledge cryptography. https://www.zprize.io/.

Accessed on 2025-07-24.

Received 2025-03-25

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 297. Publication date: October 2025.

https://doi.org/10.48550/arXiv.2401.16603
https://doi.org/10.1145/3485508
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2676726.2676995
https://www.w3.org/TR/webgpu/
https://www.w3.org/TR/WGSL/
https://doi.org/10.1145/3385412.3385973
https://doi.org/10.1145/3385412.3385973
https://doi.org/10.1145/3360559
https://webgpu.github.io/webgpu-samples/
https://github.com/WebKit/WebKit/tree/main/Source/WebGPU
https://github.com/WebKit/WebKit/tree/main/Source/WebGPU
https://huggingface.co/spaces/webml-community/whisper-large-v3-turbo-webgpu
https://huggingface.co/spaces/webml-community/whisper-large-v3-turbo-webgpu
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://github.com/gfx-rs/wgpu/pull/6431
https://github.com/gfx-rs/wgpu/pull/6431
https://huggingface.co/spaces/Xenova/experimental-phi3-webgpu
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/32.988498
https://www.zprize.io/

	Abstract
	1 Introduction 
	1.1 WGSL Data Race Specification Vulnerability 
	1.2 SafeRace: Threat Assessments and Specification Proposals

	2 Background 
	2.1 GPU Execution Model 
	2.2 Memory Consistency Models and Data Races 
	2.3 Sources of Memory Safety Violations 

	3 Threat Assessment: Bottom-Up 
	3.1 Evaluation 

	4 Threat Assessment: Top-Down 
	4.1 Extended Example 
	4.2 Shader Generation 
	4.3 Evaluation 

	5 The SafeRace Memory Safety Guarantee 
	5.1 A Memory Logic for WGSL 
	5.2 Applying SMSG
	5.3 SMSG Soundness
	5.4 Other Memory Safety Approaches

	6 Implementing SMSG Property 1 
	6.1 Evaluation 

	7 Testing SMSG Property 2 
	7.1 Evaluation

	8 Applications Beyond WebGPU 
	8.1 Browser-Based Languages
	8.2 Native Languages
	8.3 Compositional Language Design

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

