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ABSTRACT
Shared memory platforms provide a memory consistency specifi-

cation (MCS) so that developers can reason about the behaviors

of their parallel programs. Unfortunately, ensuring that a platform

conforms to its MCS is difficult, as is exemplified by numerous bugs

in well-used platforms. While existing MCS testing approaches find

bugs, their efficacy depends on the testing environment (e.g. if syn-

thetic memory pressure is applied). MCS testing environments are

difficult to evaluate since legitimate MCS violations are too rare to

use as an efficacy metric. As a result, prior approaches have missed

critical MCS bugs.

This work proposes a mutation testing approach for evaluating

MCS testing environments: MC Mutants. This approach mutates

MCS tests such that the mutants simulate bugs that might occur. A

testing environment can then be evaluated using a mutation score.

We utilize MCMutants in two novel contributions: (1) a parallel test-

ing environment, and (2) An MCS testing confidence strategy that

is parameterized over a time budget and confidence threshold. We

implement our contributions in WebGPU, a new web-based GPU

programming specification, and evaluate our techniques across

four GPUs. We improve testing speed by three orders of magnitude

over prior work, empowering us to create a conformance test suite

that reproduces many mutated tests with high confidence and re-

quires only 64 seconds per test. We identified two bugs in WebGPU

implementations, one of which led to a specification change. More-

over, the official WebGPU conformance test suite has adopted our

approach due to its efficiency, effectiveness, and broad applicability.
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1 INTRODUCTION
A memory consistency specification (MCS) for a shared memory

runtime platform defines the legal values that loads are allowed to

observe, and thus, is crucial for program reasoning. For efficiency

reasons [16], many platforms provide a relaxed MCS, which allows

complex behaviors. Validating that a platform implementation hon-

ors its MCS is a difficult, yet important, since a bug may lead to

rare, non-deterministic application errors [3, 35].

Early MCS testing work executed sequences of memory ac-

cesses [17, 39] and then analyzed a trace of the observed values.

More recent work uses formal specifications to derive small con-

current tests, often called litmus tests, which are then executed

for many iterations, checking for a violation at each iteration [5].

Litmus testing strategies have found numerous bugs in runtime

platforms [1, 4, 24, 29, 30].

1.1 Motivating Examples
The effectiveness of litmus testing approaches is extremely sensitive

to the testing environment, i.e. the context around the litmus test

that creates stress on the platform. We use the two litmus tests of

Fig. 1 to illustrate this. The CoRR (Coherence of Read-Read) test,

shown in Fig. 1a, tests if the first read in a thread (operation a )

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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thread 0 thread 1

a v0 = atomicLoad(x) c atomicStore(x,1)
b v1 = atomicLoad(x)

Condition: v0 == 1 && v1 == 0

(a) Coherence of Read-Read (CoRR) litmus test

thread 0 thread 1

a atomicStore(x, 1) d v0 = atomicLoad(y)
b fence(release) e fence(acquire)
c atomicStore(y, 1) f v1 = atomicLoad(x)

Condition: v0 == 1 && v1 == 0

(b) Message Passing rel/acq (MP-relacq) litmus test

Figure 1: Two litmus tests that illustrate bugs in WebGPU
found by our work. We observed executions that resulted in
the condition being true, even though it is disallowed by the
MCS. All memory is initialized to 0.

can observe an updated value (from operation c ), while a follow-

ing read (operation b ) reads a stale value (from the initial state).

A straightforward testing environment (i.e. one without stress)

observes no violations, but when executed in a stressful testing

environment (e.g. as used in [1, 24]), the test evinces a bug in the

WebGPU platform when executing on an Apple device with an

Intel GPU.
1

The MP-relacq (Message Passing relacq) litmus test, shown in

Fig. 1b, writes to location x ( a ) and sets a flag ( c ) in thread 0, then

reads the flag ( d ) and reads the data ( f ) in thread 1. The fence

instructions synchronize across the threads. A violation occurs if

thread 1 observes the updated flag without observing the updated

data. While existing stress testing environments did not reveal

any violations, our novel parallel approach was able to observe

violations in the WebGPU platform on AMD GPUs. This resulted

in a fix to an AMD Vulkan compiler and a specification change to

the WebGPU MCS [9].

When testing, it is impossible to tell if an unobserved illegal

execution is not allowed or if it is simply rare and was not exposed

by the tests. Thus, effective MCS testing requires tuning testing

environments to reduce the possibility of a missed bug. However,

legitimate MCS violations are exceeding rare, and thus cannot be

used as a metric for such tuning efforts. Existing approaches have

tuned their testing environments by maximizing the number of

weak, but allowed, behaviors of some litmus tests, yet have not

provided justification on why this metric is valid. Finally, existing

MCS testing techniques do not provide confidence in their ability

to find MCS bugs. Consequently, it is difficult to gauge whether it

is worth the time to perform more testing, especially when running

in time-constrained environments such as a conformance test suite.

The result of these limitations has been a lack of adoption of existing

MCS testing approaches.

1
The bug is in the WebGPU implementation, whereby Google Chrome layers over

Apple’s platform-level Metal API. We have filed an issue with Apple and await a

resolution.

1.2 Our Approach: MC Mutants
In this work, we propose Memory Consistency Mutants or MC Mu-

tants, a methodology that quantitatively evaluates MCS testing

environments using black-box mutation testing [13, 15]. Litmus

tests aremutated in such a way that the erroneous behavior that the

test was checking is are now allowed. A test environment kills the
mutated test (mutant) by observing the newly allowed execution.

The number of mutants that are killed is called the mutation score.
Additionally, MC Mutants can be used to record the speed at which

the mutants are killed, called the mutant death rate.
Intuitively, mutants check for an allowed weak memory or fine-

grained interleaving behavior that is closely related to a disallowed

behavior of an MCS litmus test. Our main contribution arises in

formally defining this notion of related; MC Mutants generates

mutants systematically by disrupting edges in a happens-before

cycle of a disallowed behavior, corresponding to a small change in

the program syntax of the litmus test.

The effectiveness of a testing environment can be evaluated by

its mutation score (and mutant death rate) when executing mutants.

Thus, a test environment must aim to maximize legal behavior

in the mutants that closely relates to the illegal behavior in the

original litmus tests. Hence, there are two constraints upon which

MC Mutants depends.

First, the legal mutant behavior must be observable on the testing

platform. That is, even if the mutant behavior is allowed by the

specification, it may not be observable on the testing platform. If the

mutant behavior is not observable, then MCMutants will be unable

to evaluate the testing environment with respect to the given mu-

tant and corresponding litmus test. Our results (see Sec. 5.2) show

that most mutant behavior is observable on GPUs across a range of

mainstream vendors. However, this might not hold for all platforms,

or mutants, in which case the mutants should be pruned accord-

ing to the expected observable behavior on the implementation

(discussed more in Sec. 3.4).

Second, the validity of MC Mutants depends on a correlation

between observing legal mutant behavior and real MCS bugs. We

validate this correlation by showing that a testing environment’s

ability to kill a mutant is highly correlated with its ability to find

related MCS bugs in three cases (Sec. 5.4). This also means that

testing environments that do not reliably kill mutants are not able

to expose the MCS bugs.

MC Mutants enables principled evaluation and optimization of

MCS test environments. An optimized testing environment can

increase the confidence that MCS bugs will be found, if they exist,

using the original, un-mutated test suite. We utilize MC Mutants

to develop two novel testing environment improvements: a paral-

lel testing environment and a testing confidence strategy. Using a

combination of these contributions, we show that both bugs we

identified in Fig. 1 are rapidly and reliably revealed in testing envi-

ronments optimized using MC Mutants. We now detail our testing

environment contributions.

Parallel Testing Environment (PTE). While previous work ran

litmus tests in parallel on multicore CPUs [5], the effectiveness was

limited by the low number of cores found on traditional SMP CPU

machines. As the number of parallel tests increases, it becomes

difficult to scale thread-to-test assignment in a way that is safe,
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efficient, and effective; especially in the presence of tunable stress

parameters. Given this, prior techniques for running parallel litmus

tests do not generalize to GPUs.

We overcome these challenges with a novel parallel testing tech-

nique that uses a parallel permutation strategy based on modular

arithmetic of co-prime numbers to assign test instances to threads

with low overhead. This approach, which we call Parallel Testing En-
vironments, or PTE, allows us to increase mutant death rates by on

average three orders of magnitude over previous work. Moreover,

MC Mutants shows that parallel testing synergizes with the stress

testing environment given in prior work [24], which increases the

mutant death rate by an additional 43%. The efficiency gained using

PTE is critical for observing the MP-relacq bug (Fig. 1b). We were

unable to observe it through extensive stress tuning using tech-

niques from prior work. However, under PTE, it readily appears at

a rate of 10.4 violations per second.

MCS Test Confidence. It is impossible to have complete con-

fidence that testing will uncover bugs, as litmus tests are non-

deterministic. However, we can utilize MC Mutants to provide a

reproducibility score for a testing environment. This is a statistical

confidence that a testing run will kill a mutant given the mutant

death rate on previous runs. It is parameterized by a time budget,

i.e. how long each test can be run for. Our results, across four GPUs

spanning four mainstream vendors, that on our tuned parallel test

environment can provide a mutation score of 82% and a repro-

ducibility score of 99.999% with a budget of 64 seconds per test,

matching the maximum mutation score achieved by prior work

with (1/4096)th the time budget. Reproducibility scores provide a

principled way to evaluate the relative effectiveness of test envi-

ronments at finding bugs.

Evaluation Specification. We evaluate our approach in WebGPU

[41], a new web-based general purpose GPU (GPGPU) framework.

WebGPU has a hierarchical execution model similar to other GPU

platforms, e.g. CUDA and OpenCL. Threads are partitioned into

workgroups, and there are several different memory regions.

However, the WebGPU MCS differs from other specifications

in that it targets devices from a wide range of vendors, e.g., Intel,

AMD, Apple, and NVIDIA.
2
In fact, it has the largest set of backends

targeted by any GPGPU MCS. To provide a portable abstraction

across these devices, WebGPU currently has relatively few options

for synchronization; there are no sequentially consistent atomic

operations as seen in NVIDIA’s PTX [28], or OpenCL [10]. How-

ever, the few ordering properties that WebGPU provides, such as

coherency across atomic accesses, must be preserved across all

devices. Given this unique context, MCS testing is both critical, as
it must ensure a single consistent MCS on a diverse set of backends,

and challenging, as testing environments must be effective across

many devices.

This work targets only one level (or scope) of the GPU execution

hierarchy, specifically threads that are in different workgroups. We

pick this scope for three reasons: (1) it is pragmatic, as there is

no other way for inter-workgroup threads to communicate with-

out the expensive routine of stopping and relaunching the kernel,

2
With mobile support planned in the future, this will include even more vendors, e.g.

Qualcomm, ARM and Imagination.

(2) prior work developed stress techniques targeting this scope [24],

providing testing environments that we can tune and evaluate, and

(3) WebGPU does not (yet) expose the subgroup (or warp in CUDA)

scope, and thus it cannot be tested. However, MC Mutants applies

generally to MCS testing, and we aim to apply it to the more com-

plete GPU execution hierarchy as the specification, stress testing

techniques, and application use-cases continue to evolve.

Using MC Mutants, a set of 20 litmus tests and 32 mutant tests

were created. We evaluate these tests across four GPU devices,

spanning four vendors: Apple, AMD, Intel, and NVIDIA, for a total

of 128 mutant/device combinations. One major impact of this work

is its adoption into the WebGPU conformance test suite (CTS) for

testing the MCS (see Sec. 5.5).

Contributions. In summary, our contributions are:

(1) MC Mutants: A mutation testing approach that can evaluate

MCS testing environments (Sec. 3).

(2) A novel parallel test environment that executes litmus test

instances in parallel (Sec. 4.1).

(3) An MCS test confidence strategy using a reproducibility

score parameterized over a time budget (Sec. 4.2).

(4) An MC Mutants implementation and evaluation in WebGPU.

Our evaluation spans 4 different GPUs from 4 different ven-

dors and shows that: (Sec. 5)

• MC Mutants generates a test suite consisting of 20 un-

mutated litmus tests and 32 mutated litmus tests.

• parallel testing environments are able to kill 81% more

mutants with an average mutant death rate over 2000×
higher than prior work.

• our MCS test confidence can explore trade-offs in repro-

ducibility and time for test engineering.

We highlight two impacts of this work: first, it identified two

MCS bugs in WebGPU implementations, one of which led to a

specification change. Second, the work has been adopted into the

WebGPU CTS (Sec. 5.5). The effectiveness of parallel test environ-

ments was a critical factor in getting the tests added to the CTS, as

the full CTS must be run often during development. The strategies

we developed for evaluating MCS test confidence allowed us to

propose a time budget of approximately one minute on average

desktop hardware for the full MCS test suite, adding little overhead

to the full CTS.

2 BACKGROUND
We now provide background on memory consistency specifications

(Sec. 2.1) and litmus tests (Sec. 2.2). We constrain the formalism to

our case study specification, WebGPU (Sec. 2.3). As WebGPU is still

a working draft, it does not yet have a formal MCS, though it is

expected to be based on the Vulkan memory model [19]. Because

of this, the MCS for WebGPU described here is not official. Instead,

it should be viewed as a non-controversial foundation on which to

explore new testing techniques.

2.1 Memory Consistency Specification (MCS)
The MCS defines two properties for shared memory concurrent

programs: (1) the definition of a data-race, i.e. unsynchronized

concurrent memory accesses that results in undefined behavior,
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and (2) for well-defined programs, the values that memory loads

may observe.

Data Races. An MCS defines two types of memory locations,

atomic and non-atomic. Atomic locations can be operated on by

atomic operations, e.g. atomic load, atomic store, atomic read-

modify-write (RMW). A data-race occurs when two threads access

the same memory location without sufficient synchronization. The

exact rules defining the required synchronization can be complex

and have been studied extensively [11]; however, if all memory

accesses occur on atomic memory, and use atomic operations, then

the program is trivially data-race free (what we call TDRF). By

their nature, data races invalidate a program and allow for unde-

fined behavior. Therefore, we consider only the portion of the MCS

that pertains to TDRF programs by focusing on programs that use

atomic operations.

Sets and Relations for MCSs. Executions can be formally reasoned

about under an MCS, e.g. to determine if an execution is allowed

or not. Following work in [6, 11], an execution is viewed as a set of

events and relations, summarized in Tab. 1. In our presentation, we

do not consider non-atomic memory accesses or fences other than

release/acquire fences. Additionally, atomic memory operations

are not parameterized over a memory order (e.g. à la C++). This

simplified model is sufficient for our WebGPU case-study.

An execution consists of events 𝐸, which can be reads (𝑅), writes

(𝑊 ), read-modify-writes (𝑅𝑀𝑊 ) or fences (𝐹 ). The 𝑅,𝑊 , and 𝑅𝑀𝑊

events contain memory locations, and the 𝑊 and 𝑅𝑀𝑊 events

contain a value to store.

All reads (or RMWs) are related to one write (or RMW) through

the reads-from (𝑟 𝑓 ) relation. Events from the same thread are related

through program-order (𝑝𝑜) if they are sequenced in the program

source (e.g. using ;). The po-loc relation is 𝑝𝑜 , but only relates events
that target the same memory location. All writes and RMWs to the

same location are ordered through coherence (𝑐𝑜), a superset of

po-loc, which intuitively represents the order in which writes reach

global visibility. The from-reads (𝑓 𝑟 ) relation is derived from 𝑐𝑜 and

𝑟 𝑓 ; it relates a read or RMW 𝑟 to a write or RMW𝑤 if 𝑟 reads-from

a𝑤 ′ that is earlier in 𝑐𝑜 than𝑤 . The communication (𝑐𝑜𝑚) relation

is simply the union of 𝑟 𝑓 , 𝑐𝑜 , and 𝑓 𝑟 .

One fence (𝑓𝑟 ) synchronizes-with (𝑠𝑤 ) another fence (𝑓𝑎) if: (1) 𝑓𝑟
and 𝑓𝑎 are in different threads and (2) there is a write or RMW𝑤

in 𝑝𝑜 after 𝑓𝑟 , and there is a read or RMW 𝑟 before 𝑓𝑎 , and 𝑟 reads

from𝑤 .

Formal Definitions of MCSs. An MCS defines the happens-before

(ℎ𝑏) relation across events in candidate executions. Once specified,

executions can be determined if they are legal or not, given the

following properties of ℎ𝑏: (1) A read must return the latest value

from a write in ℎ𝑏 order and (2) the ℎ𝑏 order must be acyclic.

The strongest MCS is sequential consistency (or SC) [25], which

states that ℎ𝑏 must be a total order across all memory accesses

and it must respect per-thread program order (𝑝𝑜). In many CPU-

centric programming languages (e.g. C++ and Java), SC is the default

behavior for race-free programs. It can be defined by instantiating

ℎ𝑏 to be equal to 𝑝𝑜 ∪ 𝑐𝑜𝑚.

However, the SC MCS disallows many compiler and architecture

optimizations. As a result, enforcing the SC MCS on a modern

Table 1: Relations and sets used in MCS

Sets Description

Reads (𝑅)
An atomic operation that reads from an atomic

memory location

Writes (𝑊 )

An atomic operation that writes to an atomic

memory location

Read-modify-writes

(𝑅𝑀𝑊 )

An atomic operation that both reads from and

writes to an atomic memory location in one

indivisible action

Fences (𝐹 ) An operation that performs a release/acquire fence

Relations Description

program-order (𝑝𝑜) events from the same thread in instruction order

po-loc 𝑝𝑜 restricted to events that target the same

memory location

reads-from (𝑟 𝑓 )
relates a𝑊 or 𝑅𝑀𝑊 𝑎 to an 𝑅 or 𝑅𝑀𝑊 𝑏, if 𝑏

reads the value that 𝑎 wrote

coherence (𝑐𝑜)
a total order over writes or read-modify-writes to

the same location

from-read (𝑓 𝑟 )

relates an 𝑅 or 𝑅𝑀𝑊 𝑎 to a𝑊 or 𝑅𝑀𝑊 𝑏 if 𝑎

obtained its value from a different𝑊 or 𝑅𝑀𝑊 𝑏′

that comes before 𝑏 in 𝑐𝑜

synchronizes-with (𝑠𝑤)

relates a release/acquire fence 𝑓𝑎 , to another 𝑓𝑟 if

they are ordered through 𝑝𝑜 , 𝑟 𝑓 and 𝑝𝑜

communication (𝑐𝑜𝑚) The union of 𝑟 𝑓 , 𝑐𝑜 and 𝑓 𝑟

system requires using expensive fence instructions, either by the

compiler or programmer. Most GPU languages are not SC by default,

and many (including SPIR-V [21] and Metal [7]) do not provide

the means for a programmer to achieve SC behavior, even if using

fence instructions.

Despite this, there exists a baseline common to all languages we

are aware of: SC-per-location [6], sometimes called coherence [11].

This specification states that for every atomic memory location 𝑎,

there is an ℎ𝑏 ordering across all memory accesses to 𝑎 such that

ℎ𝑏 respects po-loc, i.e. program order per location. This MCS can

be defined by setting ℎ𝑏 to be po-loc ∪ 𝑐𝑜𝑚.

We consider one more addition to ℎ𝑏 related to our target plat-

form of WebGPU: the release/acquire fence; and we will refer to

this model as the rel-acq-SC-per-location MCS. To add this synchro-

nization construct, the following relation is added to ℎ𝑏: 𝑝𝑜 ; 𝑠𝑤 ;𝑝𝑜

where the ; operator is sequenced-with. Intuitively, this states that

if two fences 𝑓𝑟 and 𝑓𝑎 have synchronized, i.e. they are part of 𝑠𝑤 ,

then any event 𝑒 such that 𝑒
𝑝𝑜
−−→ 𝑓𝑟 happens before any other event

𝑒 ′ if 𝑓𝑎
𝑝𝑜
−−→ 𝑒 ′. This is follows the same definition as the 𝑠𝑤 relation

in the C++ memory model [11].

2.2 Litmus Tests
A litmus test is a small concurrent programwhich tests if a platform

implementation conforms to an MCS. Not only are they used in

testing [6], but also as examples in MCS documentation [11], and

can even be used to derive an MCS [12]. A litmus test has many

candidate executions, given as a set of events and relations. Each

time the test is run, one of the candidate executions occurs, which

may or may not be valid under a given MCS.

Figure 2a shows a candidate execution of the CoRR litmus test,

which is shown as an executable program in Fig. 1a. This execution

is disallowed by the SC-per-location memory model, as it contains

the following cycle in ℎ𝑏: 𝑏
𝑓 𝑟
−−→ 𝑐

𝑟 𝑓
−−→ 𝑎

𝑝𝑜−𝑙𝑜𝑐
−−−−−−→ 𝑏.
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Figure 2b shows a candidate execution of the message-passing

litmus test from Fig. 1b, in which release/acquire fences are used

to synchronize. Thread 1 reads a stale value (0) from the initial

state, even if the threads have synchronized through the 𝑥 memory

location (using 𝑟 𝑓 and a fence). This execution is disallowed by

the rel-acq-SC-per-location MCS as follows: 𝑎
ℎ𝑏−−→ 𝑓 from the

release/acquire ℎ𝑏 rule because 𝑎
𝑝𝑜
−−→ 𝑏

𝑠𝑤−−→ 𝑒
𝑝𝑜
−−→ 𝑓 is part of

𝑝𝑜 ; 𝑠𝑤 ; 𝑝𝑜 . Because the SC-per-location constraints also include

𝑐𝑜𝑚 in ℎ𝑏 (and 𝑓 𝑟 is part of 𝑐𝑜𝑚), we also get 𝑓
ℎ𝑏−−→ 𝑎. Thus, this

execution creates a cycle in ℎ𝑏.

After executing a litmus test, it can be determined which can-

didate execution occurred by capturing each load value, e.g., to a

unique variable, and examining the final state of memory. In some

cases, it may be required to add an additional observer thread if

the execution contains several steps of 𝑐𝑜 , as the order that the

observer thread sees updates can be used to infer the 𝑐𝑜 order.

2.3 WebGPU
We apply MCS testing to WebGPU [41], a new, web-based, cross-

platform GPU programming framework. Like most GPU frame-

works, a WebGPU application consists of two parts: the host, which

runs on the CPU; and the device, which runs on the GPU. The host

is written in JavaScript and orchestrates the device computation

through theWebGPUAPI [41]. The device program (called a shader)
is written in the WebGPU Shading Language (or WGSL) [40]. We-

bGPU compiles to platform specific shading languages and runs on

their respective platforms: Metal [8], SPIR-V [22], and HLSL [32]

for Apple, Vulkan and DirectX (Microsoft) systems, respectively.

As mentioned in Sec. 1.2, the diversity of backends makes WebGPU

is a compelling platform to innovate MCS testing methodologies

such as MC Mutants.

WGSL Execution Model. The execution model of WGSL is hier-

archical; the base unit of execution is a thread,3 which is a single

stream of computation. Threads are partitioned into equally sized

workgroups, which has a queryable size defined on a per-device

basis, specified by the host at runtime. Finally, the host specifies

the number of workgroups to run the shader with, modeled as a

3-dimensional grid with a queryable size. Threads at different levels

of the hierarchy have different abilities to interact. Threads in the

same workgroup can synchronize using a control barrier (analogous
to the CUDA __syncthreads() construct).

WGSL MCS. Using synchronization on GPUs is a complex topic

due to the hierarchical programming model. Threads at different

levels of the hierarchy use different mechanisms to communicate,

and composing these layers requires careful formal analysis, which

can often be the subject of entire papers [28]. Our goal in this paper

is not to offer a complete formalization of the WGSL MCS; instead,

we consider a non-controversial, yet pragmatic, subset of the model

and focus on how to effectively test it.

As mentioned in Sec. 1.2, our efforts are restricted to inter-

workgroup interactions. Unless explicitly mentioned, we will as-

sume that all threads are in different workgroups. WGSL supports

3
In WGSL, this is called an invocation, but we use “thread” in this document as our

ideas extend to more general concurrent programming

a : r[x] == 1

b : r[x] == 0

c : w[x] = 1

thread 0 thread 1

po-loc

fr

rf

(a) Disallowed execution of the CoRR litmus test

a : w[x] = 1

c : w[y] = 1

d : r[y] == 1

thread 0 thread 1

po

rf f : r[x] == 0

b : fence

po

po

e : fence
po

fr

sw

(b) Disallowed execution of the MP-relacq litmus test

Figure 2: Candidate executions for the litmus tests shown in
Fig. 1 illustrating behaviors disallowed by theWebGPUMCS.

atomic operations on atomic memory locations. The atomic op-

eration can be a load, store, or RMWs (e.g. compare-and-swap).

WGSL must accommodate the weakest MCS of its targets; in this

case, that happens to be Apple’s Metal shading language [7]. Its

MCS is based on C++, with the restriction that the default, and

only, supported memory order is relaxed. Given this, WGSL inher-

its this syntax and the corresponding orderings properties. This

specification corresponds to the SC-per-location MCS discussed in

Sec. 2.1.

Additionally, previous versions of the WGSL specification de-

fined control barriers to provide release/acquire fence semantics

across workgroups. Thus, by using these barriers as fences, this

version of the WGSL MCS corresponds to the release-acquire-SC-

per-location MCS discussed in Sec. 2.1. As we describe in Sec. 5.4,

our work helped discover that this specification was too strong,

and later versions of the WGSL specification weakened its MCS to

simply SC-per-location on inter-workgroup memory.

3 MC MUTANTS
MC Mutants is a methodology for evaluating MCS testing environ-

ments. This approach uses cyclic candidate executions from litmus

tests, as described in Sec. 2.2. The methodology then mutates cyclic

executions by disrupting one of the edges and generates mutated

test programs by reconstructing the instructions that led to the

execution. The mutated test now has an execution that is allowed

by the MCS, but is closely related to a behavior that is disallowed

by the MCS.
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In order to ensure that mutant programs can be reconstructed

from the mutant execution, the mutation process focuses on dis-

rupting relations that correspond to the syntax of the program, as

opposed to relations that arise dynamically. For example, the po re-
lation arises from the program syntax, i.e. the order of instructions

in the test. Similarly, the sw relation arises from fence instructions

in the program syntax. This is important for our black-box mutation

approach, as our only interface to the platform is with programs

(and their syntax). Thus, our mutations encode modifications that

we can actually implement. The behaviors allowed under the mu-

tated test are behaviors that will appear in the original test if there

is a bug in the implementation of the MCS, since the MCS restricts

correct executions to not disrupt these relations.
MC Mutants uses a set of mutator functions and a function

that converts executions into programs. A mutator consist of an

abstract happens-before cycle 𝑇 (similar to those from Alglave et

al. [4]) and an edge disruptor process 𝐸. The mutator returns 𝐿, a

set of conformance litmus tests that contain disallowed candidate

executions based on 𝑇 , and 𝑀 , a set of mutated tests containing

candidate executions (closely related to the disallowed behaviors in

𝐿) for which the behavior is now allowed. A testing environment

can be evaluated as follows; the ability of a testing environment to

kill (i.e. observe) mutants in𝑀 corresponds to its ability to observe

an implementation error corresponding to 𝐸 when running 𝐿.

This paper describes three distinct mutators, summarized in

Fig. 3. Each mutator enumerates all possible syntactic edge disrup-

tions, i.e. 𝑝𝑜 , 𝑠𝑤 , and po-loc, and can be seen as a complete set of

mutants for these abstract happens-before cycle templates. Overall,

there are 20 conformance tests and 32 mutants; the totals broken

down by mutator are shown in Tab. 2.

3.1 Mutator 1: Reversing po-loc on Three Events
Mutator 1 takes in a three-event cycle, (LHS of Fig. 3a). The template

has two threads; thread 0 has two memory accesses ordered by

po-loc, (events 𝑎 and 𝑏). Thread 1 executes one memory access

(𝑐). Executions of litmus tests that correspond to this cycle are

disallowed by anyMCS that provides SC-per-location, e.g. WebGPU.

The template can be instantiated by concretizing each of the

abstract memory events (i.e. m[x]) to either a read, a write, or an

RMW. For example, the CoRR litmus test of Fig. 2a is one such

instantiation where events 𝑎 and 𝑏 are read events, and event 𝑐 is a

write event. Note that this also allows 𝑐𝑜𝑚 to be refined into one of

its constituent relations (i.e. 𝑟 𝑓 , 𝑓 𝑟 , or 𝑐𝑜).

The Conformance Set. For an MCS that provides SC-per-location,

a set of conformance tests can be generated by instantiating the

execution for all combinations of reads, writes, and RMWs such

that the cycle can be created. As a 𝑐𝑜𝑚 relation must contain at

least one write, event 𝑐 must be a write or an RMW event. Then, 𝑎

and 𝑏 can be any combination of reads, writes, or RMWs.

When instantiating a test with an RMW event, only the portion

of the RMW (the read or the write) that does not change the ℎ𝑏

relations of the original template are considered. For example, the

CoRR litmus test can have the second read in thread 0 replaced with

an RMW but not the first. This is because an RMW is conceptually

a read followed by a write. The second read in thread 0 can have

a trailing write while maintaining the ℎ𝑏 cycle. If an RMW was

a : m[x]

b : m[x]

c : w[x] | rmw[x]po-loc

com

com

a : m[x]

b : m[x]

c : w[x] | rmw[x]po-loc

com

com

thread 0 thread 1
Template Mutant

thread 0 thread 1

(a) 3-event reversing po-loc mutator

a : m[x]

b : m[x]

c : m[x]

po-loc
comcom

thread 0 thread 1
Template Mutant

thread 0 thread 1

d : m[x]

po-loc

a : m[x]

b : m[y]

c : m[y]

po
comcom

d : m[x]

po

(b) 4-event weakening po-loc mutator

sw

a : m[x]

c : w[y] | rmw[y]

thread 0 thread 1

po

comrf

Template Mutant

b:fence

po

d : r[y] | rmw[y]

f : m[x]

po

e:fence

po

sw

a : m[x]

c : w[y] | rmw[y]

thread 0 thread 1

po

comrf

b:fence?

po

d : r[y] | rmw[y]

f : m[x]

po

e:fence?
po

(c) 4-event weakening sw mutator

Figure 3: The three cycles used to instantiate conformance
tests and mutants, with conformance test templates shown
on the left and mutant templates on the right; m[x] signifies
an abstract memory event which may be instantiated as a
read, write, or RMW. The disrupted events and edges are
highlighted in red.

instantiated with the first read, then there would conceptually be a

write in between the first and second reads, which could interfere

with the cycle. While there may be multiple RMW variants with

the same memory structure as one of the original four tests, for our

evaluation only the variant with the maximum number of plain

loads and stores replaced with an RMW is included.

Finally, writes are concretized using a unique increasing value to

store and an observer thread is included for the special case where

all memory events are concretized as writes, as they must observe

a specific chain of 𝑐𝑜 .

The Edge Disruptor. Mutator 1 disrupts the po-loc edge between
𝑎 and 𝑏 by swapping them in program order (see the right hand
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Table 2: The mutators defined in Fig. 3 and the number of
conformance tests and mutants generated by each.

Mutator Conformance Tests Mutants

Reversing po-loc 8 8

Weakening po-loc 6 6

Weakening 𝑠𝑤 6 18

Combined 20 32

side of Fig. 3a). This removes the disallowed cycle from the original

template, i.e. the behavior is allowed on a system that provides only

SC-per-location. In fact, the behavior is allowed under sequential

consistency given the execution order of 𝑏, 𝑐 , 𝑎.

For a testing environment to kill these mutants, it requires the

fine-grained interleaving of an event from thread 1 between two

events of thread 0. While it may seem straightforward, the behavior

is not always easily observed, especially on GPUs. Pilot experiments

show that this fine-grained interleaving is only observable on one

out of the four GPUs that we evaluated in this study if they are

executed in a test environment without added stress.

This mutant captures the cases when the underlying system,

for whatever reason (e.g. re-order buffers), can re-order events 𝑎

and 𝑏. If a testing environment cannot expose such fine-grained

interleavings, it likely will not be effective at exposing MCS bugs.

In fact, this mutant has a death rate nearly identical to the CoRR

bug observed on the Apple system with an Intel GPU, discussed in

Sec. 5.5, showing that the ability to kill this mutant corresponds

closely to observing a real MCS bug.

The Mutants. Similar to the conformance tests, the mutant tests

can be obtained by instantiating the disrupted template (right-hand

side of Fig. 3a) with all possible combinations of memory accesses

(reads, writes, or RMWs).

3.2 Mutator 2: Weakening po-loc on Four Events
Mutator 2 (Fig. 3b) has a two-thread four-event cycle. Both threads

have memory accesses ordered by po-loc and cross-thread 𝑐𝑜𝑚

edges. An MCS that provides SC-per-location disallows these exe-

cutions.

The Conformance Set. Following the rule that the 𝑐𝑜𝑚 relation

must contain at least one write, the mutator function instantiate

a set of 6 tests. As with Mutator 1, writes are concretized using a

unique increasing value and an observer thread is included for the

special case where all memory events are concretized as writes.

The Edge Disruptor. This disruption weakens po-loc to 𝑝𝑜 by

having 𝑏 and 𝑐 operate on a second location, 𝑦, instead of 𝑥 . This

turns the test into one of the weak memory tests in [4]. Killing the

mutant thenmeans observing a weak behavior that is allowed under

a relaxed MCS, but has been shown to require stress to observe [24].

This disruptor captures errors that might occur when memory

locations are aliased or computed dynamically, as an implementa-

tion may not correctly determine that the memory locations are

the same. Indeed, as Sec. 5.4 shows, one of these tests corresponds

to a coherence issue previously observed on NVIDIA GPUs.

The Mutants. By instantiating the disrupted template in the same

way as the initial template, the mutator function instantiates six

mutants.

3.3 Mutator 3: Weakening sw on Four Events
The final mutator also uses a two-thread four-event cycle, but adds

release/acquire fences (shown in Fig. 3c). This behavior is disallowed

in the MCS release-acquire-SC-per-location.

The Conformance Set. Using plain atomic loads and stores, a set

of 3 tests are initialized. These correspond to the MP-relacq litmus

test execution from Fig. 2b as well as two other common litmus

tests execution, called load buffering and store in prior work [6].

Since release/acquire synchronization requires a store following a

fence to synchronize with a read preceding a fence, events 𝑐 and 𝑑

must be a write and a read, respectively. This precludes the direct

addition of other common weak memory litmus tests such as store

buffering. However, like in Mutator 1 more tests can be instantiated

using RMWs.

Replacing 𝑐 and/or 𝑑 with an RMW achieves the required syn-

chronization. Using this strategy, a further 3 tests are generated,

corresponding to the store buffer, read, and 2+2 write weak memory

litmus test executions [6]. In an MCS that provides sequentially

consistent fences, the addition of RMWs would be unneeded for

the generation of these three tests, but even so we believe using re-

lease/acquire fences and RMWs to “mimic” sequentially consistent

behavior is an interesting feature of a MCS to understand and test.

The Edge Disruptor. To disrupt this template 𝑠𝑤 is weakened,

removing the necessary synchronization for disallowing the weak

behavior. To weaken 𝑠𝑤 , either one or both of the fences is removed.

Removing fences is analogous to the MP-relacq bug we discovered

and described in Sec. 1.1, in which atomic operations were mis-

takenly weakened in an intermediate representation. Killing the

mutant then depends on a stressful environment that can reveal

weak memory behaviors, even in the presence of partial synchro-

nization.

The Mutants. Unlike the previous 2 mutators, each combina-

tion of memory accesses generated using the template leads to 3

instantiated mutants, as the mutant can have one or both fences

removed.

3.4 Observing Mutant Behavior
As briefly mentioned in Sec. 1.2, the mutation score is only useful

as an evaluation metric if the mutant behavior is observable on the

devices being evaluated. In some cases, the specification is more

permissive than the implementation, and as such, an implementa-

tion may give a low mutation score, even if it is being thoroughly

tested. For example, very few relaxed behaviors are observable

on an x86 device, however, a language that targets x86 (e.g. C++)

might allow many relaxed behaviors. Applying MC Mutants to test

C++ conformance on x86 as-is would likely provide a low mutation

score.

In our study, we find that the four GPUs we evaluate are able to

observe most of the mutant behaviors (83.6%), thus we keep our

mutation tests as-is. However, if this was not the case (e.g. as in the

C++ and x86 example), then the mutation tests should be pruned.
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Thread B
store(yk, 1)
store(xk, 1)

load(xi)
load(yi)

Thread A
store(yi, 1)
store(xi, 1)

load(xj)
load(yj)

Thread C
store(yj, 1)
store(xj, 1)

load(xk)
load(yk)

xi yj xk yi xj yk

Figure 4: A visualization of how multiple threads coordinate
to run parallel instances of litmus tests.

That is, each mutant test 𝑚 should be analyzed under a precise
model of the expected observed behavior of the implementation.

For example, on x86 this would be the TSO memory model [33]. If

𝑚 is not observable on the implementation, then it can be pruned

from the mutant test cases.

4 IMPROVING TESTING ENVIRONMENTS
Litmus tests are run repeatedly to account for the non-determinism

of concurrency. They are often executed in a larger context, called a

test environment that encompasses various parameters, e.g. memory

locations and thread affinity, which can influence the rate that

different test behaviors are observed. Using MC Mutants, testing

environments can be evaluated using a mutation score and mutant

death rates of the mutants generated in Sec. 3.

We now describe two improvements to the state of the art MCS

test environments: (1) a Parallel Test Environment (PTE), which

uses the thousands of threads available in a GPU to run many test

instances in parallel, and (2) an MCS Test Confidence, which pro-

vides statistical confidence around the ability of a test environment

to kill a mutant given a confidence threshold or time budget.

4.1 Parallel Test Environment (PTE)
MCS testing typically runs at most a few test instances of a test

at a time, since the technique was initially developed for small

core-count CPUs. MCS testing on highly parallel devices, e.g. GPUs,

inherited single-instance design [1, 24] due to the difficulties in

efficiently and safely scaling the number of parallel tests, espe-

cially under tunable stress testing parameters. Additionally, because

GPUs sequentialize divergent control flow execution within a warp,

efficient parallel tests should limit the amount of control flow diver-

gence in the testing program. Alas, single-instance design poorly

leverages the large number of threads enabled by highly parallel

devices.

To address this, we propose a Parallel Test Environment (PTE),

where a number of workgroups are designated as testing workgroups,
in which constituent threads coordinate to run many instances

of a litmus test in parallel. For example, two testing workgroups,

running with 256 threads each, can run 512 instances of a two-

threaded litmus test per iteration. As described in Sec. 5.2, this leads

to orders of magnitude improvements in testing efficiency.

Implementation. The number of test instances per iteration is

calculated by multiplying the number of testing workgroups by

the number of threads per workgroup. Each test instance 𝑡𝑖 is then

assigned memory locations to operate on. In a weak memory test

like MP, 𝑡𝑖 will be assigned locations 𝑥𝑖 and 𝑦𝑖 , while in a coherence

test like CoRR, 𝑡𝑖 will be assigned only 𝑥𝑖 . Next, two test instances

𝑡𝑖 and 𝑡 𝑗 are assigned, in that order, to a thread 𝐴. 𝐴 runs thread 0’s

instructions from 𝑡𝑖 and thread 1’s instructions from 𝑡 𝑗 . The other

half of 𝑡𝑖 and 𝑡 𝑗 are assigned to some other thread (not necessarily

the same one) in the opposite order of their assignment on thread

𝐴, guaranteeing that all threads’ instructions are executed for both

𝑡𝑖 and 𝑡 𝑗 .

Figure 4 shows a configuration of test instances and memory

locations assigned to threads for the MP litmus test, with fences

elided. Note that no pair of test instances are assigned to the same

two threads, increasing the different thread interactions of a test run.

Memory locations are randomly distributed throughout memory.

Test Instance Assignment. There are two difficulties in imple-

menting parallel tests on GPUs: (1) maintaining simple (i.e., non-

diverged) control flow to avoid sequentialized execution and (2)

pairing threads for each test instance. PTE uses a parallel permuta-

tion function that requires only a few operations per thread, has

no divergent control flow, and avoids simple patterns, such as map-

ping a value 𝑛 to 𝑛 + 1, which has been shown to be ineffective

in prior work [24]. Specifically, the function works as follows: for

each value, 𝑣 , in a sequence of 𝑁 consecutive natural numbers, the

function produces the result (𝑣𝑃) mod 𝑁 , where 𝑃 is a number

that is co-prime to 𝑁 .

As an example, thread 𝐴 in Fig. 4 might be index 𝑖 in the total

list of threads, and would execute the first set of instructions for

𝑡𝑖 , storing 1 to 𝑥𝑖 and 𝑦𝑖 . After executing the permutation function

𝐴 would then execute the second set of instructions for 𝑡 𝑗 , loading

𝑥 𝑗 and 𝑦 𝑗 . As some other thread had its native thread id associated

with the store instructions of 𝑡 𝑗 , each test instance is fully executed.

For a test instance 𝑡𝑖 , the permutation function can also be used

to spread memory locations 𝑥𝑖 and 𝑦𝑖 across the testing region by

having 𝑥 ’s location associated directly with a test instance 𝑡𝑖 , and

permuting 𝑦’s location. Prior work has shown that using random

native thread ids for testing can increase weak observations [1, 35].

The permutation functions achieve a similar goal, stressing cache

protocols that must handle thousands of threads accessing cache

lines which must be kept coherent.

Lastly, if there are only two testing workgroups, at least one of

𝐴, 𝐵, or 𝐶 will be in different workgroups, and if there are three or

more workgroups, 𝐴, 𝐵, and 𝐶 will all be in different workgroups.

Architectures and scheduling algorithms differ across GPU vendors,

so it may be advantageous to have workgroups communicate in

ways that vary spatially and temporally. Therefore, test instances

are striped across workgroups, so if thread 0 in workgroup 𝐴 com-

municates with some thread in workgroup 𝐵, thread 1 in workgroup

𝐵 communicates with some thread in workgroup 𝐶 .

Additional Parameters. Prior work [1, 24] has proposed addi-

tional heuristics and parameters for testing environments, such

as shuffling thread affinities, and utilizing extra threads to stress

memory. These heuristics are incorporated into PTE, so that the
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Algorithm 1Merging Test Environments

1: // 𝑡 : the mutant test to find a final environment for

2: // 𝐸: the set of environments that the mutant ran in

3: // 𝐷 : the set of devices that ran the mutant (across the environments 𝐸)

4: // 𝑟 : the reproducibility score target, 0 < 𝑟 < 1

5: // 𝑏: the maximum time the test should run, 𝑏 > 0

6: function MergeEnvironments(𝑡 , 𝐸, 𝐷 , 𝑟 , 𝑏)

7: 𝑐𝑒𝑖𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ← ⌈− log𝑒 (1−𝑟 )⌉
𝑏

8: 𝑒𝑟 ←Ø

9: 𝑛𝑟 ← 0

10: 𝑚𝑖𝑛𝑅𝑎𝑡𝑒𝑟 ←∞
11: for 𝑒 ∈ 𝐸 do
12: 𝑛𝑐 ← 0

13: 𝑚𝑖𝑛𝑅𝑎𝑡𝑒𝑐 ←∞
14: for 𝑑 ∈ 𝐷 do
15: // rate() calculates the death rate of 𝑡 on 𝑑 in 𝑒

16: 𝑟𝑎𝑡𝑒𝑐 ← rate(𝑡, 𝑑, 𝑒)
17: if 𝑟𝑎𝑡𝑒𝑐 ≥ 𝑐𝑒𝑖𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒 then
18: 𝑛𝑐 ← 𝑛𝑐 + 1
19: end if
20: if 𝑟𝑎𝑡𝑒𝑐 > 0 then
21: 𝑚𝑖𝑛𝑅𝑎𝑡𝑒𝑐 ← min(𝑚𝑖𝑛𝑅𝑎𝑡𝑒𝑐 , 𝑟𝑎𝑡𝑒𝑐 )
22: end if
23: end for
24: if 𝑛𝑐 > 𝑛𝑟 ∨ (𝑛𝑐 == 𝑛𝑟 ∧𝑚𝑖𝑛𝑅𝑎𝑡𝑒𝑐 >𝑚𝑖𝑛𝑅𝑎𝑡𝑒𝑟 ) then
25: 𝑒𝑟 ← 𝑒

26: 𝑛𝑟 ← 𝑛𝑐

27: 𝑚𝑖𝑛𝑅𝑎𝑡𝑒𝑟 ←𝑚𝑖𝑛𝑅𝑎𝑡𝑒𝑐

28: end if
29: end for
30: return 𝑒𝑟

31: end function

parallel tests can also be subject to these testing techniques. Al-

together, prior work [24] has provided 17 parameters that can be

changed to create different testing environments. It is infeasible to

examine the full space of combinations of these parameters, so a

number of random configurations are run in order to find effective

test environments, and MC Mutants can be used to evaluate their

effectiveness.

4.2 MCS Test Confidence
We present our second contribution to MCS testing environments,

which is built on MC Mutants: MCS Test Confidence. Given a set of

tests from MC Mutants (both the conformance and mutated tests),

MCS Test Confidence explores the trade-off space between testing

time and the probability that the conformance tests will reveal a

bug captured by MC Mutants.

Prior work [24] derived an equation that relates the number of

observations to the probability that the observationwill be observed

in subsequent runs. If a litmus test is executed 𝑁 times, and a

behavior of interest is observed 𝑥 times, then the probability that

a subsequent run of 𝑁 iterations will reveal at least one behavior

of interest is given by 1 − 𝑒−𝑥 . For example, if 𝑥 is 3, then there

is a 95% probability that another run of 𝑁 iterations will reveal

that behavior of interest; we call that probability the reproducibility
score.

MCS Test Confidence builds on that insight and combines it with

MC Mutants. For example, if a testing environment can provide an

average mutant death rate of 1 per second for each mutant, then

the 20 conformance tests of Sec. 3 require 3 seconds of testing time

each (for a total of 1 minute of testing time) in order to have a

reproducibility score of 95%, i.e. a 95% probability that the mutants

will be killed in a subsequent test run.

This analysis can be applied to evaluate a testing environment,

especially when deciding how long to run each test for. The results

can then be applied when curating MCS tests for inclusion in a

conformance test suite (or CTS). A time budget for testing can be

selected such that it provides sufficient confidence across many

devices.

Per-test Specialized Testing Environments. Ideally, a test environ-
ment can be hyper-tuned per test and per device . However, when

curating tests for a CTS, it is only feasible to create a testing envi-

ronment per test for each test, as these are known at contribution

time; there may be no a priori knowledge of the devices the CTS

will execute on. Therefore, a test environment for a specific test

needs to be effective on multiple devices. We now discuss how the

MCS Test Confidence approach can be used to create such a per-test

specialized testing environment.

For each mutant from MC Mutants, results are collected by run-

ning it in a set of identical test environments, generated by ran-

domly instantiating parameters, on a variety of devices. Then, one

single environment per test is chosen, using the function shown in

Alg. 1. The idea is to choose the test environment that maximizes

the number of devices on which the mutant death rate is higher

than some ceiling rate, which can be calculated using the desired

reproducibility score and time budget targets of the MCS Test Con-

fidence equation. The equation in line 7 is the inverse of 1 − 𝑒−𝑥 ,
and calculates the number of behaviors that need to be observed

divided by the time budget to get a final rate.

If two environments end up killing the mutant at a high enough

rate on the same number of devices, the environment that maxi-

mizes the minimum non-zero rate is chosen. For mutants that reach

the ceiling rate on all devices, this increases the minimum repro-

ducibility score beyond the target on that mutant. On mutants that

did not reach the target rate on at least one device, the chance that

the mutant will be reproduced on that device despite missing the

target reproducibility score is maximized.

Another useful property of breaking ties using theminimum non-

zero rate is that it leads to stable environments. If an environment

chosen by the algorithm for a given reproducibility score 𝑟 and

time budget 𝑡 meets or exceeds the target mutant death rate on all

devices, the same environment will be chosen by another run of

the algorithm that uses values 𝑟 ′, 𝑡 ′ such that 𝑟 ′ ≤ 𝑟 and 𝑡 ′ ≥ 𝑡 .

One other consideration when calculating reproducibility scores

is the total reproducibility score. Consider a CTS with 20 MCS tests

and associated test environments, each which have been found to

kill their associated mutants with 95% reproducibility. The chance

that on any specific run all 20 mutants are killed is then .9520,

or 35.8%. The CTS would need to be run three times, on average,

to observe a run where all 20 mutants are killed. Increasing the

per test reproducibility allows for a much more stable CTS; a per

test reproducibility score of 99.999% and 20 tests leads to a total
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Table 3: The devices included in our study, along with how
many compute units (CUs) they contain and a short name
we will use throughout the text.

Vendor Chip CUs Type Short
Name

NVIDIA GeForce RTX 2080 64 Discrete NVIDIA

AMD Radeon Pro 5500M 24 Discrete AMD

Intel Iris Plus Graphics 48 Integrated Intel

Apple M1 128 Integrated M1

reproducibility score of 99.98%, meaning that a test run will only

fail to kill all mutants on 1 out of 500 runs.

5 EVALUATION
We now evaluate our testing environment innovations using MC

Mutants and compare to prior work.

5.1 Experimental Setup
As described in Sec. 3, we instantiate 20 conformance tests and

32 associated mutants. We evaluate test environments on the 32

mutants and measure their efficacy using the mutation score and

mutant death rate. As mentioned throughout, our case-study spec-

ification is WebGPU. We empirically found that Google Chrome

had the most stable WebGPU implementation, and thus, we used

it exclusively. We evaluate on four GPU devices, summarized in

Tab. 3. These devices span four vendors and sample both integrated

and discrete GPUs to provide a broad foundation upon which to

evaluate MC Mutants and parallel testing environments. We note

that WebGPU is not yet supported on mobile devices.

We tune testing environments by randomly generating parame-

ters and executing the mutants in each environment. We complete

tuning for Parallel Test Environments (PTE), and the single in-

stance techniques proposed in prior work [24] (SITE). We note that

SITE is strictly an improvement on the testing strategies used in

‘litmus’ [5] since it includes all of the ‘litmus‘ testing parameters

(documented in [5, Sec. 3]), with the exception of parallel testing,

which has not been efficiently implemented on GPUs before our

work. SITE additionally includes memory stressing threads, which

‘litmus‘ does not.

We perform a tuning run over 150 testing environments, running

the SITEs for 300 iterations (executing 300 test instances) and the

PTEs for 100 iterations (executing 125K test instances on average).

We run more instances on SITE tests as to provide them more

opportunities to kill mutants. The number of testing environments

was chosen based on the ability to do tuning runs in a reasonable

amount of time (e.g. overnight).

In addition to single instance and parallel testing environments,

we also evaluate two testing environments that perform no stress

heuristics. The first, SITE Baseline, executes a single instance

of the mutants for 300 iterations without any added stress and

uses 32 workgroups, of which two workgroups have one thread

execute each thread in the mutant. The second, PTE Baseline,
runs parallel instances of the mutants for 100 iterations without

any added stress and uses 1024 testing workgroups, each of which

includes 256 threads.

The total tuning time, across all four devices, was 9.27 hours for

the parallel environments and 16.38 hours for the single instance

environments. In contrast, prior work ran tuning for multiple days

on each chip [24]. Our focus on real-world impact in the form of

adoption into conformance test suites encourages us to explore test

environments that quickly and reliably kill mutants.

5.2 Mutation Score and Mutant Death Rates
Figure 5 outlines the mutation score, defined as the total number

of mutants killed in at least one test environment, and the aver-

age mutant death rate, defined as the average of the maximum

death rates of each mutant in the specified category. Specifically,

figures 5a, 5c and 5e outline the mutation scores for each muta-

tor, while figures 5b, 5d, and 5f outline the average mutant death

rate for each mutator. Figures 5g and 5h show the mutation score

and rate averaged across all mutators, while figures 5i and 5j show

the mutation scores and mutant death rates averaged across all

mutation types and devices.

5.2.1 Results Summary. We first summarize the performance of

PTE compared to SITE in terms of mutation score and mutant death

rate. We observe that PTE outperforms SITE by both mutation

score and by mutant death rate. Across all devices and all tests, PTE

achieves a mutation score of 83.6%, whereas SITE achieves a score of

46.1%, an improvement of 81.4% (see Fig. 5i). Figure 5i also outlines

the importance of stress; SITE-baseline only achieves a mutation

score of 6.3%, while PTE-baseline only achieves a mutation score

of 72.7%.

PTE is even more impressive when considering mutant death

rate, shown in Fig. 5j. PTE achieves an average mutant death rate

across all tests of 35K mutants per second, 2731× better than the

mutant death rate of SITE.

5.2.2 Detailed Analysis. Next, we provide a detailed analysis over

the results shown in Fig. 5.

Mutation Score. PTE achieves a higher mutation score on 3/4 ar-

chitectures (AMD, NVIDIA, and M1), which enables PTE to provide

a higher aggregate mutation score than SITE. In particular, SITE

does very poorly on NVIDIA and M1, where it is unable to kill

any weakening po-loc mutants (see Fig. 5c), and only rarely kills

weakening 𝑠𝑤 mutants (see Fig. 5e). SITE outperforms PTE on Intel

in our experiments, but this is not a fundamental limitation of PTE

since SITE is a strict subset of PTE. There exists a PTE equivalent

to each SITE, as PTE allows environments that execute only one

instance of the test per iteration. Rather, our testing did not identify

a PTE that matches the outperforming SITE because the state space

of PTE is much larger.

Mutant Death Rate. PTE achieves a higher mutant death rate

on all architectures. SITE does poorly on NVIDIA and M1 (see

Fig. 5h), largely because of a rate of 0 mutants per second for 𝑠𝑤

and weakening po-loc mutants.

Stress and PTE. We observe that stress improves the performance

of PTE in the aggregate, improving the mutation score from 72.7%
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Figure 5: Mutation scores and mutant death rates.
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Figure 6: Analyzing the impact of time budgets and repro-
ducibility targets on mutation scores.

for PTE-baseline to 83.5% for PTE and improving the average mu-

tant death rate from 24,400 for PTE-baseline to 35,000 for PTE. How-

ever, these improvements are not uniform across devices; stress

offers some benefit to PTE mutation scores and mutant death rate

on Intel and AMD, no benefit to PTE in terms of mutation scores

on NVIDIA, and only negligibly benefits PTE in terms of mutant

death rate on NVIDIA. Finally, stress improves the mutation score

of PTE on M1, but decreases the mutant death rate.

Effectiveness Across Mutators. The highest mutant death rates

occur on reversing po-loc (Fig. 5b) mutants, with average rates of

22K, 58K, 428K, and, 6.5K mutants killed per second on Intel, AMD,

NVIDIA, and M1 respectively. The lowest rates occur on the weak-

ening sw (Fig. 5h) mutants. This is to be expected as the reversing

po-loc mutator produces mutants that are allowed under sequential

consistency, and requires only fine-grained interleavings to kill the

mutants. On the other hand, killing a mutant from the weakening

sw mutator requires observing a weak behavior, potentially with

partial synchronization, i.e. a fence on one of the threads.

5.3 Reproducible Mutants
We next evaluate whether MCS test confidence enables us to create

a single test environment for each litmus test that is suitable for

testing multiple devices, e.g. as is required by a CTS (see Sec. 4.2).

Fig. 6 shows the results of combining test environments per

test using different time budgets and two reproducibility score tar-

gets, 95% and 99.999%. 95% reproducibility corresponds to killing a

mutant 3 times in the allotted time budget and leads to a total repro-

ducibility of 36.5% with 20 tests, as explained in Sec. 4.2. Due to this

relatively low reproducibility, we consider 95% to be a lower bound

on an appropriate reproducibility score target. We choose 99.999%

as the maximum target; it corresponds to running a specific litmus

test once per minute for a year and only seeing 5 non-reproducible

runs, and leads to a total reproducibility of 99.98% with 20 tests.

PTE achieves an 82% mutation score with a 64 second time bud-

get and a reproducibility target of 99.999%. In contrast, SITE only

achieves a mutation score of 43% with the same constraints. PTE

Table 4: The Pearson Correlation Coefficient (PCC) between
killing mutants and observing real bugs. Values for PCCs
range from 0 to 1, and while it varies across domain, corre-
lations greater than .8 are generally considered to be very
strong.

Vendor Failed Test Mutant Type PCC

Intel CoRR Reversing po-loc .996

AMD MP-relacq Weakening sw .967

NVIDIA MP-CO Weakening po-loc .893

testing environments are almost twice as effective at killing mutants

when using a single test environment across architectures.

The difference between PTE and SITE is even more striking at

lower testing time budgets. SITE mutation scores degrade rapidly

as the time budget decreases, until the rate drops to zero at 1/32 of
a second. In contrast, PTE is still able to kill 36% of mutants with

95% reproducibility when given a time budget of 1/1024 of a second.
Moreover, PTE achieves roughly the same mutation score as SITE’s

maximum score (43%) when given a time budget of only 1/64 of a
second–i.e. PTE achieves the same mutation score with (1/4096)th
the time budget. This is an important result for large software CTS

consideration, as testing time is at a premium.

5.4 Correlation Analysis
This work discovered two bugs which we reported to the platform

maintainers. One of these, observing disallowed behaviors in the

MP-relacq test, was only uncovered on AMD devices using PTE.

This bug led to both a fix to AMD Vulkan drivers and a change to

the WebGPU specification [9]. The second, observing disallowed

behaviors in the CoRR litmus test on Intel GPUs runningWebGPU’s

implementation in Chrome over Apple’s Metal API, has been re-

ported to Apple.

We performed a correlation analysis between real-world bugs

and MC Mutants to determine whether killing a mutant correlates

with the ability to identify real MCS bugs. We use our two new bugs

and recreated a coherence violation in NVIDIA Kepler GPUs [1].

This previous coherence violation manifests as a violation of one of

the weakening po-loc (Fig. 3b) conformance tests, in which thread

0’s memory accesses are writes, and thread 1’s memory accesses

are reads. We call this test message passing coherence (MP-CO).

We executed the conformance test that reveals each bug and

the test’s associated mutant(s) for 100 iterations in 150 random

parallel testing environments. Tab. 4 shows the Pearson Correlation

Coefficient (PCC), which measures linear correlation and ranges

from -1 to 1, between the mutant death rate and the observed bug

rate across all the environments for each bug.

The results indicate high correlation between killing mutants

and identifying MCS bugs. In particular, the PCC for each bug is

larger than .89; according to the Student’s t-test, the probability

of such a PCC occurring due to random chance is less than 10
−6
%.

Thus, we show that a testing environments ability to kill mutants

(generated by MC Mutants) correlates to its ability to find real bugs

in the conformance test suite (also generated by MC Mutants). We

emphasize that this case study used a mutant from each of our
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three mutators and spans three GPU vendors (AMD, NVIDIA, and

Intel), showing that our mutators are all effective and the approach

is portable across the diverse backends targeted by WebGPU.

5.5 Impact
Our work led to the discovery and reporting of two MCS bugs to

platform maintainers. Additionally, our work on improving test

environments has led to the official WebGPU CTS adopting our

PTE for MCS testing [26]. The WebGPU CTS is part of Chromium’s

continuous integration process as development on WebGPU com-

pilers continue, and runs on a variety of GPUs (e.g. NVIDIA, Intel)

and platform implementations (e.g. Vulkan, Metal, Direct3D). We

expect the diversity of devices to grow as more browsers and plat-

forms, especially mobile ones, implement the WebGPU standard.

At least one parallel test has also been included in the Vulkan CTS

as a result of the bug found on AMD drivers [23].

6 RELATEDWORK
Memory Model Testing. Memory model testing started with work

that executed long hand-written sequences of memory accesses or

generated pseudo-random programs and analyzed the output to de-

termine what behaviors were allowed by a machine [17, 39]. Litmus

tests have been formalized [5] and synthesizers from templates of

relations have been developed [4]. Further work on synthesizers can

generate litmus tests directly from an MCS [38]. Litmus tests have

been used to reveal the details of GPU architectures and propose

formal models [1]. GPU cache coherence has been tested using tools

that autonomously generate random patterns of memory requests

and immediately detect any inconsistencies [36].

In contrast, our work designs a methodology to evaluate testing

environments for MCS testing: MC Mutants. We evaluate prior

work [24] using MC Mutants and provide quantitative results on

its effectiveness. Furthermore, we provide two improvements to

testing environments: (1) we improve testing efficiency, similar

to [31], but with more generality as we execute generic litmus tests

rather than bespoke algebraic sequences; (2) we provide a novel

method to curate conformance test suites with quantitative analysis

about their ability to catch bugs related to mutations, which has

not been discussed in prior work.

Mutation Testing. Mutation testing was originally designed as a

form of white-box testing for sequential programs [15]. It has since

been applied to concurrent programs while enforcing deterministic

test outcomes [14]. Recent work has examined white-box mutation

testing in the context of non-deterministic, flaky tests, using a

test re-running strategy to increase the confidence in mutation

scores [34]. Our approach similarly addresses non-determinism;

however, we evaluate testing environments rather than testing

suites and we target memory consistency runtime platforms rather

than parallel software.

Black-box testing is used to test a system without modifying its

internal behavior. Black-box tests are usually derived from a sys-

tem’s specification, which led researchers to develop specification

based mutation testing [13], where test data is generated from a

specification that has itself been mutated. Over the years, specifica-

tion based mutation testing has been applied to predicate calculus,

network protocols, finite state machines, and security policies [20].

Our approach builds on these foundations using well-developed

MCS formalisms.

Related MCSs. Many ISA and language level MCSs have been

formalized, including x86 [33], ARM and Power [2], and C++ [11],

to name a few. Higher level languages have also started to formalize

specifications for accessing sharedmemory, including Javascript [37].

Work has also been done on formalizing memory models for het-

erogeneous devices [18, 28].

While we provide a simple formalism of WebGPU (Sec. 2.3) it

is largely based off the Vulkan memory model [19] and simple

instatiations of the parameterized memory models in [6]. We leave

a more complete formalism of WebGPU’s MCS to future work.

7 CONCLUSION
In this paper, we present MC Mutants: the first principled method-

ology for evaluating MCS testing environments. We then use MC

Mutants to evaluate two novel improvements to MCS testing en-

vironments: a parallel testing strategy that is orders of magnitude

more efficient than prior work, and a testing confidence approach

which can explore the trade-off space between testing time and

confidence. We evaluate our approach in the new WebGPU frame-

work and identified two MCS bugs, one of which led to a significant

specification change. Finally, our approach has been used to curate

MCS tests that have been incorporated into the WebGPU CTS.

8 DATA-AVAILABILITY STATEMENT
The code used to collect our results and the data itself are available

openly [27].
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact contains information for both collecting analyzing the

results we present in the paper. On the collection side, we provide

the means to run the exact experiments included in the paper. There

are four devices included in the main study in the paper: an NVIDIA

GeForce RTX 2080, an AMD Radeon Pro, an Intel Iris Plus Graphics,

and an Apple M1. Additionally, a device running using Nvidia’s

Kepler architecture (such as an NVIDIA GeForce GTX 780) was

used to reproduce a bug found in earlier work. Using the exact

devices from the paper will show very similar results to ours, but

any GPU can be used to evaluate the way in which we collect and

analyze data.
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On the analysis side, we include the results from running the

experiments on the four devices in the paper, as well as the analysis

tools we used to generate the main figures in the paper. This is

all done using python scripts, with a couple common packages

installed using pip: numpy, matplotlib, pandas. Additionally, re-

viewers can use the analysis tools to check the results of their own

data collection, and we’d encourage them to send us the results!

A.2 Artifact Checklist (Meta-information)
• Run-time environment: Google Chrome, OSX, Windows, Linux

• Hardware: NVIDIA GeForce RTX 2080, AMD Radeon Pro, Intel

Iris Plus Graphics, Apple M1.

• Execution: 2-4 hours

• Metrics: test time, number/rate of weak behaviors

• Output: json

• Experiments: Python scripts

• How much disk space required (approximately)?: 2-4 MB

• How much time is needed to prepare workflow (approxi-
mately)?: 10-15 minutes

• How much time is needed to complete experiments (approxi-
mately)?: 2-4 hours

• Publicly available?: Yes

• Archived (provide DOI)?: Yes, DOI: 10.5281/zenodo.7196061

A.3 Description
A.3.1 How to Access. The data and analysis scripts are available

on Github at https://github.com/reeselevine/mc-mutants-artifact.

We will strive to keep the information on this repository up to date

as the software used to run our code changes.

The source code for the hosted webage is also available on github:

https://github.com/reeselevine/webgpu-litmus. Disk space required

is minimal, on the order of a couple megabytes.

A.3.2 Hardware Dependencies. To reproduce the exact results from
the paper, the following devices are required: NVIDIA GeForce RTX

2080, AMD Radeon Pro, Intel Iris Plus Graphics, Apple M1. Devices

from the same manufacturer/architecture generation will likely

produce similar results to the ones in the paper.

Additionally, to reproduce the bug used in the correlation anal-

ysis from an older paper, an NVIDIA Kepler architecture GPU is

required, such as an NVIDIA GeForce GTX 780.

A.3.3 Software Dependencies. To collect the results using the hosted
webpage, Google Chrome is required.

To run the website locally, Google Chrome Canary is required,

as well as node.js and npm.

To run the analysis scripts, python3 is required, as well as the

packages numpy, matplotlib, and pandas. These can be installed

using pip.

A.3.4 Data Sets. All data used for the results in the paper is in-

cluded in the Github repository.

A.4 Installation
There are two parts to the installation/validation: data collection

and results analysis.

Data Collection: Visit the hosted website or clone it and run

it using the instructions on its Github page. If running locally and

using Chrome Canary, WebGPU must be enabled by typing in

"chrome://flags" in the address bar, searching for the flag "enable-

unsafe-webgpu", and switching it to "Enabled".

To validate it works, visit https://gpuharbor.ucsc.edu/webgpu-

mem-testing-artifact/tuning/ and press the "PTE" preset. This will

take a while to run, so as a sanity check, reduce the number of

configurations to 1. The test run should complete with no errors,

and the results should be available for download when clicking the

"All Runs: Statistics" button.

Results Analysis: Clone the repository and install the python

packages needed using pip. To validate everything is working, run

the mk_figure5.py, mk_figure6.py, and mk_table4.py scripts

(i.e. python3 mk_figure5.py). If everything is set up correctly,

the figures from the paper will be available under the figures
directory, and the correlation numbers from Table 4 will be printed

directly to the terminal.

A.5 Experiment Workflow
All of the results used in the paper were collected using WebGPU,

which runs from the browser. As mentioned, we host the website

at https://gpuharbor.ucsc.edu/webgpu-mem-testing-artifact, which

runs the code used to collect the data for the paper directly from

the browser.

The tabs on the left side of the page contain links to many dif-

ferent litmus tests. Each include the ability to set parameters, run

different configurations, and see results. To run the experiments

included in the paper, go to the Tuning Suite tab. There, you will

see four preset buttons, "SITE Baseline", "SITE", "PTE Baseline", and

"PTE". These presets correspond to the four environments described

in Section 5.1 of the paper. Don’t worry about setting any other

parameters; once you’ve clicked the preset you’d like to run, press

the "Start Tuning" button. When the experiment is complete, which

may take 2-4 hours per test, the results are available for download

as a json file from the "All Runs: Statistics" button.

Similarly, the buttons under the "Correlation Tests" heading can

be used to replicate the correlation study in the paper (assuming

access to the GPUs used). Each will run the same configuration

used in the paper, and the results analysis below can be used to

check the correlations between the conformance tests and mutants.

A.6 Evaluation and Expected Results
All of the data collected and included in the paper are also included

in this repository. Specifically, the folders site_baseline, site,
pte_baseline, and pte contain the results for each of the four

devices. correlation_analysis contains the results of running

the mutants and the kernel that observes a bug in the three devices

described in Section 5.4 of the paper.

All the figures in the paper can be reproduced exactly using

the data in the directories. If the reviewers have collected data on

one/all of the devices used in the paper, replace the json file with

the one downloaded after running the corresponding tests. The

new results will be included in the generated graph instead of the

ones we have collected.

To generate the graphs included in Figure 5 of the paper, run

python3 mk_figure5.py. The resulting pdfs will be written to the

figures/ directory. Similarily, mk_figure6.py creates Figure 6, and

mk_table4.py prints out the data included in Table 4 of the paper.
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The other file included in this repository, analysis.py, contains
code for parsing the results of a tuning run. There are three different

analyses that can be performed. To see the possible command line

arguments, run python3 analysis.py -h.
Mutation Scores and Mutant Death Rates: Given a result file

(e.g. pte/amd.json), running python3 analysis.py --action
mutation-score --stats_path pte/amd.jsonwill print out the
number of mutants that were caught by the tuning run, as well as

the average mutant death rate. These numbers are broken down by

mutant category and combined across all categories, as shown in

Figure 5 of the paper.

Merging Test Environments: Given a directory of result

files (e.g. pte), running python3 analysis.py --action merge
--stats_path pte will print out the number of tests in the PTE

datasets that are reproducible across the four devices at a given

reproducibility score target and time budget, as described in Section

4.2 of the paper. In fact, the function merge_test_environments
in analysis.py implements Algorithm 1 of the paper, combining

environments on a per test basis. To change the reproducibility

score target and time budget, command line arguments --rep and

--budget can be used. Therefore, python3 analysis.py --action
merge --stats_path pte --rep 99.999 --budget 4 will find
the number of tests that can be reproduced with 99.999% confidence

at a time budget of 4 seconds per test.

Correlation Analysis: Given a result file (e.g. amd.json in

correlation_analysis), the command python3 analysis.py
--action correlation --stats_path correlation_analysis
/amd.json will print out a table showing the correlation between

the number of weak behaviors (or bugs observed) per test in the

dataset. For example, the result of the above command is a 4x4

table showing the correlation between an unmutated conformance

test, Message Passing Barrier Variant, and its three mutants, as

defined by Mutator 3 in Section 3.3 of the paper. Notice that while

not all the tests are highly correlated, there is a 96.7% correlation

between the mutant Message Passing Barrier Variant 2 and the

conformance test, which is the number reported in Table 4 of the

paper for this bug. While we only use correlation analysis in our

paper to show the relation between observing bugs in conformance

tests and weak behaviors in mutants, it can also be used to show

general correlation between any pairs of tests in a dataset.

REFERENCES
[1] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen

Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. 2015. GPU Con-

currency: Weak Behaviours and Programming Assumptions. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM.

https://doi.org/10.1145/2694344.2694391

[2] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar,

Peter Sewell, and Francesco Zappa Nardelli. 2009. The Semantics of Power

and ARM Multiprocessor Machine Code. InWorkshop on Declarative Aspects of
Multicore Programming. Association for Computing Machinery, New York, NY,

USA, 13–24. https://doi.org/10.1145/1481839.1481842

[3] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. 2013.

Software Verification forWeakMemory via ProgramTransformation. In European
Symposium on Programming, ESOP (Lecture Notes in Computer Science, Vol. 7792).
Springer, 512–532. https://doi.org/10.1007/978-3-642-37036-6_28

[4] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in

Weak Memory Models. In Computer Aided Verification, Tayssir Touili, Byron
Cook, and Paul Jackson (Eds.). Springer Berlin Heidelberg, 258–272.

[5] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus:

Running Tests against Hardware. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Springer. https://doi.org/10.1007/978-3-642-

19835-9_5

[6] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-

elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. 36, 2 (2014), 7:1–7:74. https://doi.org/10.1145/2627752

[7] Apple. 2021. Metal Shading Language Specification, Version 2.4. https://developer.

apple.com/metal/Metal-Shading-Language-Specification.pdf.

[8] Apple. 2022. Metal. https://developer.apple.com/documentation/metal/. Retrieved

March 2022.

[9] Alan Baker. 2021. Fixes to memory model for barriers and atomics. https:

//github.com/gpuweb/gpuweb/pull/2297.

[10] Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Overhauling SC

Atomics in C11 and OpenCL. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’16). Asso-
ciation for Computing Machinery, 634–648. https://doi.org/10.1145/2837614.

2837637

[11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.

Mathematizing C++ Concurrency. In Principles of Programming Languages (POPL).
ACM. https://doi.org/10.1145/1926385.1926394

[12] James Bornholt and Emina Torlak. 2017. Synthesizing Memory Models From

Framework Sketches and Litmus Tests. In Programming Language Design and
Implementation (PLDI). ACM. https://doi.org/10.1145/3062341.3062353

[13] Timothy A. Budd and Ajei S. Gopal. 1985. Program Testing by Specification

Mutation. Computer Languages 10, 1 (1985), 63–73. https://doi.org/10.1016/0096-

0551(85)90011-6

[14] R. Carver. 1993. Mutation-Based Testing of Concurrent Programs. In Proceedings
of IEEE International Test Conference - (ITC). 845–853. https://doi.org/10.1109/

TEST.1993.470617

[15] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1978. Hints on Test Data Selection:

Help for the Practicing Programmer. Computer 11, 4 (1978), 34–41. https:

//doi.org/10.1109/C-M.1978.218136

[16] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. 1991. Performance

Evaluation of Memory Consistency Models for Shared-Memory Multiproces-

sors. In Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM. https://doi.org/10.1145/106972.106997

[17] S. Hangal, D. Vahia, C. Manovit, J.-Y.J. Lu, and S. Narayanan. 2004. TSOtool: A

Program for Verifying Memory Systems Using the Memory Consistency Model.

In International Symposium on Computer Architecture (ISCA), 2004. 114–123. https:
//doi.org/10.1109/ISCA.2004.1310768

[18] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R. Gaster,

Mark D. Hill, Steven K. Reinhardt, and David A. Wood. 2014. Heterogeneous-

Race-Free Memory Models. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS). Association for Computing Machinery. https:

//doi.org/10.1145/2541940.2541981

[19] Jeff Bolz. 2022. Vulkan Memory Model. https://www.khronos.org/registry/

vulkan/specs/1.1-extensions/html/vkspec.html#memory-model.

[20] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of

Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011), 649–678.
https://doi.org/10.1109/TSE.2010.62

[21] Khronos Group. 2021. SPIR-V Specification Version 1.6, Revision 1. https://www.

khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html.

[22] Khronos Group. 2022. Vulkan 1.3 Core API.

[23] Khronos Groups. 2022. Test message passing using permuted

indices. https://github.com/KhronosGroup/VK-GL-CTS/commit/

0f0473342f80ab4ddcdd3588c034fc41b285e6ca.

[24] Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi. 2020. Foun-

dations of Empirical Memory Consistency Testing. Proc. ACM Program. Lang. 4,
OOPSLA (2020). https://doi.org/10.1145/3428294

[25] L. Lamport. 1979. How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs. IEEE Trans. Comput. 28, 9 (1979), 690–691.

https://doi.org/10.1109/TC.1979.1675439

[26] Reese Levine. 2022. Add comprehensive memory model tests. https://github.

com/gpuweb/cts/pull/1330.

[27] Reese Levine, Tianhao Guo, Mingun Cho, Alan Baker, Raph Levien, David Neto,

Andrew Quinn, and Tyler Sorensen. 2022. MC Mutants Artifact. https://doi.org/

10.5281/zenodo.7196061

[28] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A Formal

Analysis of the NVIDIA PTXMemory ConsistencyModel. InArchitectural Support
for Programming Languages and Operating Systems (ASPLOS). ACM. https:

//doi.org/10.1145/3297858.3304043

[29] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, andMichael Pellauer. 2017.

RTLcheck: Verifying the Memory Consistency of RTL Designs. In International
Symposium on Microarchitecture, MICRO. ACM. https://doi.org/10.1145/3123939.

3124536

[30] Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Mar-

garet Martonosi. 2016. Counterexamples and Proof Loophole for the C/C++ to

POWER and ARMv7 Trailing-Sync Compiler Mappings. CoRR abs/1611.01507

(2016). arXiv:1611.01507

487

https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1145/1481839.1481842
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1145/2627752
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/documentation/metal/
https://github.com/gpuweb/gpuweb/pull/2297
https://github.com/gpuweb/gpuweb/pull/2297
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1016/0096-0551(85)90011-6
https://doi.org/10.1016/0096-0551(85)90011-6
https://doi.org/10.1109/TEST.1993.470617
https://doi.org/10.1109/TEST.1993.470617
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/106972.106997
https://doi.org/10.1109/ISCA.2004.1310768
https://doi.org/10.1109/ISCA.2004.1310768
https://doi.org/10.1145/2541940.2541981
https://doi.org/10.1145/2541940.2541981
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#memory-model
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#memory-model
https://doi.org/10.1109/TSE.2010.62
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html
https://github.com/KhronosGroup/VK-GL-CTS/commit/0f0473342f80ab4ddcdd3588c034fc41b285e6ca
https://github.com/KhronosGroup/VK-GL-CTS/commit/0f0473342f80ab4ddcdd3588c034fc41b285e6ca
https://doi.org/10.1145/3428294
https://doi.org/10.1109/TC.1979.1675439
https://github.com/gpuweb/cts/pull/1330
https://github.com/gpuweb/cts/pull/1330
https://doi.org/10.5281/zenodo.7196061
https://doi.org/10.5281/zenodo.7196061
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1145/3297858.3304043
https://doi.org/10.1145/3123939.3124536
https://doi.org/10.1145/3123939.3124536
https://arxiv.org/abs/1611.01507


ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Reese Levine, Tianhao Guo, Mingun Cho, Alan Baker, Raph Levien, David Neto, AndrewQuinn, and Tyler Sorensen

[31] Themis Melissaris, Markos Markakis, Kelly Shaw, and Margaret Martonosi. 2020.

PerpLE: Improving the Speed and Effectiveness of Memory Consistency Testing.

In International Symposium on Microarchitecture (MICRO). https://doi.org/10.

1109/MICRO50266.2020.00037

[32] Microsoft. 2020. Programming guide for Direct3D 11. https://docs.microsoft.

com/en-us/windows/win32/direct3d11/dx-graphics-overviews.

[33] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory

Model: x86-TSO. In Theorem Proving in Higher Order Logics. 391–407. https:

//doi.org/10.1007/978-3-642-03359-9_27

[34] August Shi, Jonathan Bell, and Darko Marinov. 2019. Mitigating the Effects of
Flaky Tests on Mutation Testing. Association for Computing Machinery, New

York, NY, USA, 112–122. https://doi.org/10.1145/3293882.3330568

[35] Tyler Sorensen and Alastair F. Donaldson. 2016. Exposing Errors Related to Weak

Memory in GPU Applications. In Programming Language Design and Implemen-
tation PLDI. ACM. https://doi.org/10.1145/2908080.2908114

[36] Tuan Ta, Xianwei Zhang, Anthony Gutierrez, and Bradford M. Beckmann. 2019.

Autonomous Data-Race-Free GPU Testing. In 2019 IEEE International Sympo-
sium on Workload Characterization (IISWC). 81–92. https://doi.org/10.1109/

IISWC47752.2019.9042019

[37] Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen

Dolan, Shaked Flur, Jean Pichon-Pharabod, and Shu-yu Guo. 2020. Repairing and

Mechanising the JavaScript Relaxed Memory Model. In Programming Language
Design and Implementation (PLDI). Association for Computing Machinery. https:

//doi.org/10.1145/3385412.3385973

[38] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides.

2017. Automatically Comparing Memory Consistency Models. In Principles of
Programming Languages (POPL). ACM. https://doi.org/10.1145/3009837.3009838

[39] William W. Collier. 1994. ARCHTEST. http://www.mpdiag.com/archtest.html.

[40] World Wide Web Consortium (W3C). 2022. WebGPU Shading Language: Editor’s

Draft. https://gpuweb.github.io/gpuweb/wgsl/.

[41] World Wide Web Consortium (W3C). 2022. WebGPU: W3C Working Draft.

https://www.w3.org/TR/webgpu/.

Received 2022-07-07; accepted 2022-09-22

488

https://doi.org/10.1109/MICRO50266.2020.00037
https://doi.org/10.1109/MICRO50266.2020.00037
https://docs.microsoft.com/en-us/windows/win32/direct3d11/dx-graphics-overviews
https://docs.microsoft.com/en-us/windows/win32/direct3d11/dx-graphics-overviews
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3293882.3330568
https://doi.org/10.1145/2908080.2908114
https://doi.org/10.1109/IISWC47752.2019.9042019
https://doi.org/10.1109/IISWC47752.2019.9042019
https://doi.org/10.1145/3385412.3385973
https://doi.org/10.1145/3385412.3385973
https://doi.org/10.1145/3009837.3009838
http://www.mpdiag.com/archtest.html
https://gpuweb.github.io/gpuweb/wgsl/
https://www.w3.org/TR/webgpu/

	Abstract
	1 Introduction
	1.1 Motivating Examples 
	1.2 Our Approach: MC Mutants

	2 Background 
	2.1 Memory Consistency Specification (MCS) 
	2.2 Litmus Tests 
	2.3 WebGPU 

	3 MC Mutants 
	3.1 Mutator 1: Reversing po-loc on Three Events 
	3.2 Mutator 2: Weakening po-loc on Four Events 
	3.3 Mutator 3: Weakening sw on Four Events 
	3.4 Observing Mutant Behavior 

	4 Improving Testing Environments 
	4.1 Parallel Test Environment (PTE) 
	4.2 MCS Test Confidence 

	5 Evaluation 
	5.1 Experimental Setup 
	5.2 Mutation Score and Mutant Death Rates 
	5.3 Reproducible Mutants 
	5.4 Correlation Analysis
	5.5 Impact

	6 Related Work 
	7 Conclusion
	8 Data-Availability Statement
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results

	References

